已知四棱锥pabcd中pa垂直平面abcd,abcd是直角梯形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:12:40
已知四棱锥pabcd中pa垂直平面abcd,abcd是直角梯形
在四棱锥P-ABCD中,PA垂直于平面AC.且四边形ABCD是矩形,则该四棱锥的四个侧面中有几个直角三角形,为什么

PA垂直于平面AC.PA垂直于AB,三角形PAB是直角三角形PA垂直于AD,三角形PAD是直角三角形PA垂直于BC,AB垂直于BC,BC垂直于平面PABBC垂直于PB三角形PBC是直角三角形同理三角形

四棱锥P-ABCD中,PA垂直底面ABCD,PC垂直AD,底面ABCD为梯形,AB//DC,AB垂直BC,PA=AB=B

PA垂直底面ABCD所以PA垂直AD、,PC垂直AD所以AD垂直PAC,所以AD垂直于AC,看下面的梯形ABCD,连接AC、BD交于O、2AB=2BC=CD、三角形AOB相似于三角形BOC、所以BO比

已知四棱锥p-abcd中底面为平行四边形PA垂直ABCD,PA=根号3AB=1PC=2,ABC=60,求二面角P-CD-

⊿PAC是直角三角形AC²=4-3=1AB=AC∠ABC=60º⊿ABC是等边三角形⊿ADC是等边三角形取CD中点E连接AE,PE∴∠PEA是二面角P-CD-B在直角三角形PAE中

已知在四棱锥P-ABCD中,底面ABCD是平行四边形,PA垂直于平面ABCD,PA=√3,AB=1,AD=2,∠BAD=

郭敦顒回答:∵在四棱锥P-ABCD中,底面ABCD是平行四边形,PA垂直于平面ABCD,PA=√3,AB=1,AD=2,∠BAD=120°,E是BC的中点,∴∠ABC=60°,AB=BE=EC=CD=

在四棱锥PABCD中,四边形ABCD是菱形PA=PC E为PB中点

你可以画个草图分析1,连接BD交AC、于F点,再连接EF在三角形PBD中EF卫中位线所以EF平行于PD所以PD平行平面AEC2连接PF因为PA=PC所以三角形PAC为等腰三角形所以PF垂直于ACAC垂

已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB//CD角ABC等于45度,DC=1AB=2 PA垂直平面ABCD

证明:连接AC,过C做CE⊥AB于E∵DA⊥AB∴DA//CE∵DC//AB∴四边形AECD为矩形∴CD=AE=1∵AB=2∴EB=1∵∠CBA=45°∴∠ECB=45°∴CE=EB=1∵CE=1/2

已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB//DC,角ABC=45度,DC=1,AB=2,PA垂直平面ABC

第一问,AB平行于CD,而CD属于平面PCD,所以AB平行于PCD第二问,因为BCA是一个等腰直角三角形,所以BC垂直于AC,而AC属于平面PAC.另外PA垂直于底面,而BC属于底面,所以BC又垂直于

如图,四棱锥P-ABCD中,底面ABCD为正方形,PA=PD,PA垂直PD,PA垂直平面PDC, E为棱PD的中点

①连BD,交AC于O,连OE∵ABCD是正方形∴O是BD中点又E是PD中点∴OE是△DBP的中位线∴PB∥OE∵OE∈平面EAC∴PB∥平面EAC②∵PA⊥平面PDC∴PA⊥DC∵ABCD是正方形∴D

已知四棱锥P-ABCD中,PA垂直于平面ABCD,底面ABCD是直角梯形,角ADC为直角,AD平行于BC,AB垂直于AC

一、(1)平面APC中,连结CG,延长交AP于E,连结GF、BE,∵G是△APC重心,∴CG/GE=2,而CF/BF=2,在三角形BEC中,∵CF/BF=CG/EG=2,∴GF//BE,∵AC⊥AB,

立体几何已知四棱锥P——ABCD中,PA垂直平面ABC

证明:在AC上找H点,使得CH=2AH,连FH、GH.连接CG,延长交PA于J.因为G为三角形APC重心,所以CG/GJ=2且AJ=PJ.因为CF/FB=CH/AH=2,所以FH平行于AB.又因为平面

已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB//CD,角ABC=45度,DC=1AB=2 PA垂直平面ABCD

1、∵AB//CD,(已知),CD∈平面PCD,∴AB//平面PCD.2、在底面ABCD上作CE⊥AB,垂足E,∵〈ABC=45度,∴三角形CEB是等腰直角三角形,∴CE=BE,∵DE//AE.CE/

在四棱锥P-ABCD中,PA垂直于菱形ABCD所在面,M是CD中点 ,AC与BD交于O点.已知AB=PA=2a,AN垂直

北京大学附中2014届高三数学一轮复习空间几何体单元训练第二十题

如图,在四棱锥Pabcd中,pa⊥平面abcd,底面abcd是菱形,ab=2,∠bad=60度.1.求证bd⊥平面p~c

1、设AC和BD交于O,∵PA⊥平面ABCD,BD∈平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC,(菱形对角线互相垂直平分),∵AO∩PA=A,∴BD⊥平面PAC,2、PA=AB,

已知四棱锥pabcd中,底面四边形为正方形,侧面pdc为正三角形,且pdc⊥abcd,e为pc中点.

证明:(1)连接AC交BD于点O,连接EO因为:ABCD是正方形所以:AC⊥BD,点O是AC的中点因为:点E是PC的中点所以:EO是三角形APC的中位线所以:EO//AP又因为:EO是平面APC和平面

已知四棱锥pabcd的底面是直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD ,且pa=ad=dc=1/2,

(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊥面PCD,∴面PAD⊥面PCD.过点B作BE∥C

已知四棱锥P-ABCD,底面ABCD为平行四边形,其中PA垂直平面ABCD,AB=√2,AP=...

证明:令AC与BD的交点为O,连接OM,AN,因为AB/BC=1/2=cos60°=cos∠ABC,所以AC⊥AB,AC=√6,因为PA⊥面ABCD,所以PA⊥AC,则PC=3,PN=MN=MC=1,

四棱锥P-ABCD中,PA垂直ABCD,PC垂直AD,底面ABCD为梯形,AB平行DC,AB垂直BC,PA=AB=BC,

证明:因为PA垂直ABCD,所以PA垂直BC因为,AB垂直BC,所以BC垂直于平面PAB因为BC真包含于平面PBC所以平面PAB垂直平面PCB连接AC,BD交于点O,连OE设PA=AB=BC=a易证三

已知四棱锥P-ABCD中,PA垂直平面ABCD,ABCD是直角梯形,AD平行BC,∠BAD=90°,BC=2AD.求证:

∵PA垂直平面ABCD,AB∈平面ABCD∴PA⊥AB∵ABCD是直角梯形,AD平行BC,∠BAD=90°∴AB⊥AD∵PA∩AD=A∴AB⊥平面PAD∵PD∈平面PAD∴AB⊥PD

在四棱锥P-ABCD中PA,AB,AD两两真垂直,已知AD//BC,BC=2AD,E是PB的中点:(1)求证AE//面P

是证:AE//面PCD吧证明:找PC中点为F连DF、EF、在△PBC中,EF为中位线∴EF平行且等于BC的一半EF=AD∵AD//BC∴EF//ADEF平行且相等AD所以平行四边形ADFE∴AE//D