已知向量组a1=(1,1,2,3),a2=(-1,-1,1,1)求向量组的秩
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:16:25
设x=(x1,x2,x3)与a1正交,则x1+2x2+3x3=0.取其一组正交的基础解系即为所求,这是常用的方法令x2=1,x3=0得a1=(-2,1,0)^T--这个正常取取x1=1,x2=2,得a
设a3=(x1,x2,x3),则根据正交有:x1+x2+x3=0x1-2x2+x3=0求出一个解即可:(1,0,-1)
|B|=|a1+a2,2a2|=2|a1+a2,a2|=2|a1,a2|=2|A|=2
A=[a1,a2,a3];B=[b1,b2,b3],A、B中各向量要写成列向量,题目的意思就是AX=B无解.即秩R(A,B)不等于秩R(A),因此只需将矩阵[A,B]用行初等变换化成阶梯型说明这点就可
过程省略向量2字:|CA|=sqrt(a1^2+a2^2),|CB|=sqrt(b1^2+b2^2),CA·CB=(a1,a2)·(b1,b2)=a1b1+a2b2=|CA|*|CB|cosC,故:c
假设存在一组实数k1,…,kr,使得k1b1+…+krbr=0,即 k1a1+k2(a1+a2)+…+kr(a1+…+ar)=(k1+…+kr)a1+(k2+…+kr)a2+…+
由A1+A2,A3+A1,A2-kA3线性相关得:存在不全为0的3个数a,b,c,使得a(A1+A2)+b(A3+A1)+c(A2-kA3)=0即(a+b)A1+(a+c)A2+(b-kc)A3=0再
102124157第一行乘-1加到2,3行,得102022055第3行减第2行,得102022000所以a1,a2,a3线性相关,a1,a2线性无关
1,1,10,2,5第1行乘-2加到第3行2,4,71,1,10,2,5第2行乘-1加到第3行0,2,51,1,10,2,50,0,0秩等于非零行数2.向量有3个,所以线性相关
因为通解中只有一个向量所以AX=0的基础解系含1个解向量所以n-r(A)=4-r(A)=1所以r(A)=3.又因为(1,0,1,0)是AX=0的解向量所以a1+a3=0所以a1,a2,a4是a1,a2
(b1,b2,b3)=(a1,a2,a3)P,即B组可由A组线性表示.P=1111-2100-7因为|P|=-3*(-7)=21≠0所以P可逆.即有(b1,b2,b3)P^(-1)=(a1,a2,a3
由a^Ta=(1,-2,-1;-2,4,2;-1,2,1),知a=(1,-2,1)^Ta1^2,a2^2,a3^3分别等于1,4,1
a^Ta=(1,-2,-1;-2,4,2;-1,2,1),a1^2+a2^2+a3^2=tr(a^Ta)=1+4+1=6.
(b1,b2,b3)=11121-1-1121110-1-30231110-1-300-3满秩,所以线性无关
3个3维向量线性相关的充分必要条件是它们构成的行列式等于0行列式1233-1223k=35-7k.所以k=5.
1031-130-12172写成矩阵形式,通过初等变换化为梯形矩阵为103101100000非零行的行数为2,则秩为2
R(a1,a2,a3)=3,)a1,a2,a3线性无关,R(a1,a2,a3,a4)=3,a1,a2,a3,a4线性相关.从“无关相关表示定理”,a4是a1,a2,a3的线性组合.R(a1,a2,a3
若向量组a1,a2,a3线性相关,则存在不全为零的实数x,y,z,使xa1+ya2+za3=0,即kx+2y+z=0,2x+ky-z=0,解得k=3或k=-2x+z=0故,k=3或k=-2时,向量组a