已知向量OA=(3 4)OB=(6 -3)OC=(5-X -3-X)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:10:19
已知向量OA=(3 4)OB=(6 -3)OC=(5-X -3-X)
已知O为ΔABC的重心,证明 向量OA+向量OB+向量OC=0

A(x1,y1),B(x2,y2),C(x3,y3)则重心坐标为O=((x1+x2+x3)/3,(y1+y2+y3)/3)OA=(x1-(x1+x2+x3)/3,y1-(y1+y2+y3)/3)OB=

已知点O是三角形ABC的重心,求向量OA+向量OB+向量OC=?

点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量

已知平面向量OA,OB,OC满足:OA=OB=OC 向量OA⊥OB,向量OA=xOC+yOB,则x+y取值范围?

因为OA=OB=OC,向量OA⊥OB所以建立直角坐标系,设O(0,0),A(a,0),B(0,a),C(acosθ,asinθ)(a>0)所以向量OA=(a,0),向量OB=(0,a),向量OC=(a

已知平面上有四点O,A,B,C,满足向量OA+向量OB+向量OC=0,向量OA*向量OB=向量OB*向量OC=向量OC*

设OA*OB=OB*OC=OC*OA=k,由OA+OB+OC=0得OA*(OA+OB+OC)=0,即OA^2+2k=0,因此OA^2=-2k,同理,OB^2=OC^2=-2k,因此AB^2=(OB-O

已知向量OA,OB,OC且向量OC=λ向量OA+μ向量OB若已知λ+μ=1求证ABC三点共线

若λ+μ=1成立,则λ=1-μ所以OC=λOA+μOB即为OC=(1-μ)OA+μOB所以OC-OA=μ(OB-OA)即AC=μAB所以AC∥AB,所以A,B,C三点共线;

有关向量的题目已知平面上有四点O、A、B、C,满足向量OA+向量OB+向量OC=向量0,向量OA·向量OB=向量OB·向

OA+OB+OC=0两端同乘以OA得OA^2-2=0,|OA|=√2同理,|OB|=|OC|=√2所以,由AB^2=(OB-OA)^2=OB^2-2OB*OA+OA^2=6得|AB|=√6同理,|BC

已知向量OA=(cosa,sina),OB=(3-cosa,4-sina),若向量OA‖OB

cosa(4-sina)-sina(3-cosa)=04cosa-sinacosa+sinacosa-3sina=04cosa=3sina=4/3cos2a=(1-tan^2a)/(1+tan^2a)

已知向量OA∥OB,绝对值向量OA=3,绝对值向量OB=1,求绝对值向量OA-OB

|OA-OB|=4或2再问:过程再答:已知向量OA∥OB,OA与OB同向时,|OA-OB|=|3-1|=2;OA与OB反向时,|OA-OB|=|3-(-1)|=4;

已知向量OA=(4,6),向量OB=(3,5),且向量OC⊥向量OA,向量A // 向量B,那么向量OC=?

设oc向量为(m,n)根据向量oc与oa垂直,所以oa.oc=0=4m+6n式1又因为ac向量=oc-oa=(m-4,n-6)并且ac与ob平行,所以有ac=kobm-4=3k式2n-6=5k式33个

已知向量OA的模=2,向量OB的模=2根号2,向量OA*向量OB=0,点C在AB上角AOC=30°,用向量OA和向量OB

过点c做CE//OACF//OB设OC长度为a△CEB∽△AFC则有BE/CF=CE/AF(1)因为角AOC=30°则CF=a/2=OEOF=CE=根3a/2所以BE=2根2-a/2AF=2-根3a/

已知点O为三角形ABC的重心,且OA=2,则向量OA*(向量OB+向量OC)=

设M为BC中点,则向量OA*(向量OB+向量OC)=OA*2OM=OA*(-OA)=-OA^2=-4

已知向量OA=向量e1,向量OB=向量e2,且|OA|=|OB|=1,∠AOB=120°,

角平分线可以表达为k(向量OA/|OA|+向量OB/|OB|)因此本题可以写出OC=5(e1+e2)

已知AB向量=2i-3j.OB向量=-i+j.求OA向量.

解析:已知AB向量=2i-3j.OB向量=-i+j,那么:向量OA=向量OB+向量BA=向量OB-向量AB=-i+j-(2i-3j)=-3i+4j

已知ABC是圆O :x2+y2=1上三点,向量OA+OB=OC ,求向量OA×OA

这样来的,三点在圆上,则a=b=c,也就是他们的模长相等,而OA+OB=OC,则C在角AOB的角平分线上,设角AOC=α,角BOC=α则acosα+bcosα=c,可知α=60,则角AOB=120,O

已知OA向量和OB向量是不共线向量,AP向量=t*AB向量,使用OA向量和OB向量表示OP向

向量OP=向量OA+向量AP=向量OA+t向量AB=向量OA+t*(向量OB-向量OA)=(1-t)*向量OA+t*向量OB

已知向量OA=(sinx,cosx),向量OB=(sinx+2cosx,3cosx),令f(x)=向量OA×向量OB,

f(x)=sinx(sinx+2cosx)+3cos^x=sin^x+2sinxcosx+3cos^x=2+sin2x+cos2x=2+√2sin(2x+π/4)(1)f(x)的最小正周期是π.(2)

已知向量OA的模=2,向量OB的模=2根号3,向量OA*向量OB=0,点C在AB上角AOC=30°,用向量OA和向量OB

由题意,|OA|=2,|OB|=2sqrt(3),OAdotOB=0,即OA与OB垂直即△ABC是直角三角形,故:|AB|=4,且∠OAB=π/3,∠OBA=π/6故:|AC|=|OA|/2=1,|C

已知向量OA,OB,OC满足条件OA+OB+OC=0(都是向量),且|OA|=|OB|=|OC|=1,求证:△ABC是正

OA+OB+OC=0OA+OB=-OCOA^2+OB^2+2OA*OB=OC^21+1+2OA*OC=12OA*OC=-1OA*OC=-1/2cosθ=120°同理,∠AOB=∠AOC=∠COB=12

1.已知向量OA,OB,OC 向量OA=OB=3,向量OA与OB夹角为60度,向量OC=1/3向量OA+2/3OB,则向

我发现,你的第2/3/5是不是同一道题啊第一题:0第二、三、五:√6/2第四题:(3√3-4)/10第六题:3700我大致做了一遍,你参考一下