已知向量a=2,向量b=1,向量a和b的夹角为60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:10:56
已知向量a=2,向量b=1,向量a和b的夹角为60度
已知|向量a|=1,|向量b|=根号2,(1)向量a,向量b的夹角为135°,求向量a+向量b的绝对值

|a+b|²=|a|²+2a*b+|b|²=1+2×1×√2×cos135°+(√2)²=3-2=1,则|a+b|=1

已知|向量a|=2,|向量b|=1,向量a与向量b夹角为“三分之派”

∵│m│^2=(2a+b)^2=4a^2+4ab+b^2=16+1+4*2*1*cos60度=21│n│^2=(a-4b)^2=a^2-8ab+16b^2=4-8*2*1*cos60度+16=12∴│

设向量a=(cosA,sinA),向量b=(cosB,sinB),且向量a-向量b=(-2/3,1/3),若C为向量a向

因为,向量a-向量b=(-2/3,1/3),所以,cosA-cosB=-2/3,sinA-sinB=1/3.把上面两个式子分别平方,然后相加.别忘了,sinA^2+cosA^2=1```整理得,cos

已知2向量a-3向量b=20向量i-8向量j,-向量a+2向量b=-11向量i+5向量j 向量i、向量j是X Y轴正方向

设:2向量a-3向量b=20向量i-8向量j为(1)-向量a+2向量b=-11向量i+5向量j为(2)(2)×2+(1)得向量b=-2向量i+2向量j(1)×2+(2)×3得7向量i+7向量j(不知道

已知a向量的模=2,b向量的模=1,a向量与b向量的夹角为60°,若向量 2a向量+kb向量与a向量+b向量垂直,则k=

a*b=|a|*|b|*cos60°=2*1*1/2=1向量2a向量+kb向量与a向量+b向量垂直所以(2a+kb)(a+b)=02a²+2ab+kab+kb²=02*4+2*1+

已知a向量、b向量是非零向量,且满足a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1

a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1|a|=2(|a|-|b|)(|a|+|b|)=1|a|^2-|b|^2=1/2|a|^2=1|向量b|=2分之根号2(1)求(a-b)^2+

高中数学向量简单问题已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向

a⊥b,则a*b=0|a-b|^2=(a-b)*(a-b)=|a|^2+|b|^2=5+1=6,|a-b|=√6|a+tb|^2=(a+tb)*(a+tb)=|a|^2+t^2×|b|^2=5+t^2

已知向量|a|=1,向量|b|=√2

若向量a、向量b的夹角为135º|向量a+向量b|=√a^2+2ab+b^2=1若向量a平行向量b求向量a.向量b当a,b同向时为√2反向时为-√2

已知向量a的膜=根号2,向量b的膜=1,向量a与向量b的夹角为45度求 使向量(2向量a+λ向量b)与(λ向量a-3向量

设这个夹角是α则cosα=ab/a的模b的模=(2a+λb)(λa-3b)/a的模b的模=(2λa²-6ab+λ²ab-3λb²)/a的模b的模=(2λ2-6√2cos4

已知向量a=(2,0),向量b为非零向量,若向量a+向量b,向量a-向量b与x轴正方向的夹角为30°和120°,求向量b

设b=(x,y)a+b=(x+2,y)a-b=(2-x,-y)y/(x+2)=tan30或tan330-y/(2-x)=tan120或tan240x=4y=+-2√3或x=1y=+-√3b=(1,√3

已知向量a=(1,1/2),向量b=(0,-1/2),向量c=向量a+k*向量b,向量d=向量a-向量b,向量c与向量d

c=(1,1/2-k/2);d=(1,1);∴cos=(1+1/2-k/2)/√(1+(1/2-k/2)²)√(1+1)=cos45°=√2/2;∴(3/2-k/2)/√2√(1+(1+k&

已知向量a的模=1,向量b的模=根号2,若向量a平行向量b,求向量a乘向量b!

a·b=|a||b|cosx因为两向量平行所以cosX为1答案为1*根号2=根号2这么详细表太感动

已知向量a=(1,2),向量·b=(-2,-4),|向量c|=根号5,若(向量a+向量b)*向量c=5/2,求向量a与向

向量a=(1,2),|向量a|=√5.注意到向量b=-2向量a(向量a+向量b)*向量c=5/2可化为:(向量a-2向量a)*向量c=5/2,-a*c=5/2,根据数量积的定义可得:-|a||c|co

已知向量|a|=4,向量|b|=3,向量a垂直向量b的夹角为120度,且向量c=向量a+2向量b,向量d=2向量a+k向

a²=16,b²=9,a•b=|a||b|cos120°=-6.(1)向量c⊥向量d时,c•d=0(a+2b)•(2a+kb)=2a²

已知|向量a|=3,|向量b|=1,向量a与向量b夹角为3π/2,向量m=3a向量-b向量,n向量=2a向量+2b向量,

两个向量的夹角不可能是二分之三派.是2π/3就按这个来求.由已知,a*b=3*1*cos(2π/3)=-3/2,因此m*n=(3a-b)*(2a+2b)=6a^2+4a*b-2b^2=6*9+4*(-

已知向量e1,e2是互相垂直的单位向量,且向量a=3向量e1+2向量e2,向量b=-3向量e1+4向量e2,则向量a乘向

a=3e1+2e2b=-3e1+4e2e1*e1=1e2*e2=1e1*e2=0a*b=(3e1+2e2)*(-3e1+4e2)=-9e1*e1-6e2*e1+12e1*e2+8e2*e2=-9-0+

已知向量a=(1,2),向量B=(-2,3),向量C=(4,-7),试用向量a,向量b表示向量c

令C=ta+vb(1)(注:t.v是实数,a,b是向量,以下一样)向量a=(1,2),向量B=(-2,3),向量C=(4,-7),(4,-7)=t(1,2)+v(-2,3)根据对应相等得到:4=t-2

1.已知向量a,b,且AB向量=a向量+2b向量,BC向量=-5a向量+6b向量,CD向量=7

1、答案:A先将AC,BD算出,看它与已知哪一个有倍数关系.2、答案:0向量化简就可以了呀3、答案:AC三边中线矢量和为零(证法1:将每一条矢量中线看成为两临边矢量之和证法2:同三中位线构成三角形一样

已知|向量a+向量b|=2,|向量a-向量b|=3,且cos=1/4,求|向量a|,|向量b|

设c=a+b,d=a-b,则|c|=2,|d|=3,cos=1/4.a=(c+d)/2,b=(c-d)/2.|c+d|=sqrt((c+d)^2)=sqrt(c*c+2c*d*cos+d*d)=sqr