已知向量a,b满足a的模长=2根号2,b的模长=2,ab=4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:51:19
已知向量a,b满足a的模长=2根号2,b的模长=2,ab=4
已知向量a,b,c满足向量a=向量b的模等于根号3,向量a乘以向量b等于3/2,

等于4,先由条件得出向量a,b的夹角为60度,完了再设向量c的模长为x.c-a-b的模长为1,两边平方,进而得出x的一个一元二次方程,完了得出x的求根公式,内含三角函数,取最大值即可

已知非零向量a、b满足a向量模长为1,a减b向量的模长为根号3,a向量与b向量夹角为120°,求b向量模长为多少

a,b,b-a构成三角形,a,b夹角为120度,|a|=1,|b-a|=根号3根据余弦定律cos120度=[|a|^2+|b|^2-|b-a|^2)/2|a||b|带入得到-1/2=(1+|b|^2-

已知a向量、b向量是非零向量,且满足a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1

a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1|a|=2(|a|-|b|)(|a|+|b|)=1|a|^2-|b|^2=1/2|a|^2=1|向量b|=2分之根号2(1)求(a-b)^2+

已知非零向量a,b满足(向量a-向量b)⊥向量b,且(向量a+2向量b)⊥(向量a-2向量b)求向量a与向量b的夹角

a-b与b垂直,即:(a-b)·b=a·b-|b|^2=0,即:a·b=|b|^2a+2b与a-2b垂直,即:(a+2b)·(a-2b)=|a|^2-4|b|^2=0即:|a|^2=4|b|^2,即:

已知向量a,向量b,向量c,满足|向量a|=2,详见图.

|c|的取值范围是:【根号3-1,根号3+1】.a/|a|表示与a同向的单位向量,a/|a|+b/|b|=(a+b)/|a+b|===>a,b的夹角为120°,且|b|=2.建系,设向量a=OA=(2

已知向量a的模长=3,向量b=(1,2),且向量a⊥向量b,求向量a的坐标

设a=(x,y)x+2y=0x²+y²=9解得x=-6/√5或者6/√5y=3/√5或者-3/√5a=(-6/√5,3/√5)或者a=(6/√5,-3/√5)

已知A,B,C为三角形ABC的三个内角,向量a满足a的模长=根号2,a=(余弦A-B/2,根号3正弦A+B/2),若C最

|向量α|²=cos²(A-B)/2+3sin²(A+B)=[1+cos(A-B)]/2+3sin²C=2;所以3sin²C=3/2-½co

已知平面向量a、b满足a向量的模长为2,b向量的模长为1,且(a+b)与(a-2.5b)垂直,求a与b夹角

(a+b)(a-5/2b)=|a|²-5/2|b|²-3/2ab=4-5/2-3/2ab=0ab=11=ab=|a|*|b|cos=2cos,所以cos=1/2=π/3

已知非零向量a,向量b满足:向量a+向量b的绝对值=向量a-向量b的绝对值,则向量a,向量b的关系

你这个问题没说清楚,是不是|a+b|=|a-b|如果是这样的问题.|a|^2+|b|^2+2ab=|a|^2+|b|^2-2ab则2ab=0,或向量ab的关系为互相垂直.cos值=0.注意书写的规范化

已知向量a,b是非零向量,且满足a*b= -2|b|,则|a=2是向量a与b反向的什么条件?

由a*b=-2|b|得|a|*|b|cos=-2|b||a|cos=-2充分性若a=2则cos=-1a与b的夹角为180度则a与b反向必要性若a与b反向则=180度cos=-1|a|=-2/(cos)

已知非零向量a与b满足(a+b)(2a-b)=0,则a向量的模/b向量的模的最小值为

2a^2+2ab-ab-b^2=02a^2+ab-b^2=02︱a︱^2+︱a︱︱b︱cosθ-︱b︱^2=0令︱a︱/︱b︱=t则:2t^2+cosθt-1=0t={-cosθ+√[(cosθ)^2

已知向量a,b,c,d满足:向量a的模等于1,向量b的模等于根号2,

这个题最好用数形结合的方法:a和b的位置关系式一定的,|a|=1,|b|=sqrt(2)a·b=1/2,cos=sqrt(2)/4,以b的终点为圆心,半径为1,画一个圆则d就在这个圆上,即:|b-d|

已知向量a,b满足向量a的模=1,向量b的模等于2,向量a与b的夹角为60度,则(向量│a+2b│)的值

|a|=1,则a^2=1|b|=2,则b^2=4向量a与b的夹角为60度,则:ab=|a||b|cos60=1|a+2b|^2=a^2+4ab+4b^2=1+4+16=21所以:|a+2b|=√21

已知向量a,b满足向量a的模=1,向量b的模等于2,向量a与b的夹角为60度,则(向量a-b)的模

|a-b|^2=a^2+b^2-2a*b=a^2+b^2-2|a||b|cos60=1+2^2-2*1*2*0.5=3|a-b|=根号3

已知非零向量满足|a|=2,|a-b|=1,则向量a与b夹角的最大值

|a-b|=1故(a-b)^2=│a│^2+│b│^2-2│a││b│cosθ=1即4+│b│^2-4│b│cosθ=1得到cosθ=1/4(3/│b│+│b│)而│b│>0由均值不等式,3/│b│+

已知向量a,b是两个非零向量,满足向量a的模长=向量b的模长=向量a-b的模长=1,则向量b与向量a+b的夹角为?

求两个向量的夹角,最先想到的就是a*b=|a||b|*cosα(a为向量a与b的夹角,这里向量不是题目中a与b,只是个公式),所以要求b与a+b的夹角,我只要知道b(a+b)的值和|b|*|a+b|的

已知向量a、b 满足|a|=1 |b|=2,若向量(a+b)垂直向量a,求a与b的夹角大小

(a+b)*a=|a+b|*|a|=0+++++++++++++++++++++上面这个式写完整了应该为(a+b)*a=|a+b|*|a|cos(pi/2)=0推不出:根号5+4cos*1=0====