已知动点p与点a(4,-2),b(-2,6)且pa垂直pb求点p的轨迹方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:52:16
已知动点p与点a(4,-2),b(-2,6)且pa垂直pb求点p的轨迹方程
已知点P是圆x^2+y^2-4x-4y+4=0上的一个动点,点A的坐标为(10,0),点M满足向量MP=向量AM,当点P

圆x^2+y^2-4x-4y+4=0即(x-2)^2+(y-2)^2=4圆心C(2,2),半径r=2设P(m,n),M(x,y),又A(10,0)P在圆上,则(m-2)^2+(n-2)^2=4(#)因

在平面直角坐标系XOY中,点p(x,y)为动点,已知点A(根号2,0)

(1)x^2/2+y^2=1(x≠±根号2,y≠0)(2)设l的方程为:x=ty+1与x^2/2+y^2=1联立消去x得:(ty+1)^2+2y^2-2=0即(t^2+2)y^2+2ty-1=0设M(

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|

设P(x,y),(x+3)^2+y^2=4(x-3)^2+4y^2,(x-5)^2+y^2=16,∴曲线是一个圆,半径为5,圆心(5,0).2、|QM|的最小值应该是两条垂直l1且和圆相切的切线,直线

已知点P是抛物线x2=4y上的动点,点P在直线y+1=0上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小

抛物线的焦点坐标F(0,1),准线方程为y=-1.根据抛物线的定义可知|PM|=|PF|,所以|PA|+|PM|=|PA|+|PF|≥|AF|,即当A,P,F三点共线时,所以最小值为42+(2−1)2

求解:已知P是抛物线y^2=4x上的动点,求P点与原点连线的中点M的轨迹方程,谢谢了

设P点坐标为(x,y),则P点与原点连线的中点M的坐标为((x-0)/2,(y-0)/2)=(x/2,y/2)y^2=4x,则x=y^2/4x/2=y^2/8=(y/2)^2/2(y/2)^2=2*x

如图,已知抛物线y=-4x^2+13/2x+3与y轴,x轴正半轴分别交于点A,B,点P是该抛物线一个动点,过点P作PC∥

(1)x=0时,y=3y=-4x²+13/2·x+3=0得到x=2、-8/3∴A(0,3)B(2,0)(2)y=-4x²+13/2·x+3=3得到x1=0x2=13/8∴AP=x2

如图,已知定点a(4,0),动点p(0,a).(一道数学题)

1.PA=根号[16+a^2]小于5则a^2小于9-3〈a〈32.PA=根号[16+a^2]大于5则a^2大于9取a=4或者5,则p(0,4),p(0,5)

已知动圆P与定圆B:x2+y2+2根号5x-31=0内切,且动圆P经过一定点A(根号5,0).(1)求动圆圆心P的轨迹方

圆B:(x+√5)^2+y^2=6^2,圆心为(-√5,0),半径为6A点(√5,0)在圆B内部,因此圆P也在B内部,设其半径为r,则两圆的圆心距为6-r设其圆心为(a,b),则P的方程为:(x-a)

已知点P是抛物线y^2=4x的动点,焦点F,点A(6,3).则|PA|+|PF|的最小值是

再问:���԰�ͼƬ���������再答:再答:

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.

(1)设P点坐标为(x,y)根据|PA|=2|PB|列出方程:(x+3)^2+y^2=4[(x-3)^2+y^2]==>(x-5)^2+y^2=16说明是一个圆(2)直接求距离的极值是比较麻烦的,因此

已知P是抛物线y^2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(3.5,4),

抛物线y^2=2x的焦点为F(1/2,0)./PA/+/PM/=/PA/+d-1/2=/PA/+/PF/-1/2.当A、P、F三点共线时,/PA/+/PF/最小.直线AF的斜率为:k=4/(3.5-0

已知点P是抛物线x2=4y上的一个动点,则点P到点M(2,0)的距离与点P到该抛物线准线的距离之和的最小值为(  )

∵抛物线x2=4y的焦点F的坐标为F(0,1),作图如下,∵抛物线x2=4y的准线方程为y=-1,设点P到该抛物线准线y=-1的距离为d,由抛物线的定义可知,d=|PF|,∴|PM|+d=|PM|+|

已知点A(2,0),动点P到A的距离等于P到X轴的距离,求点P的轨迹方程

设P点坐标为(x,y)由已知可得:|PA|=|y|,则:|PA|^2=y^2即:(x-2)^2+(y-0)^2=y^2化简后得到:x=2

已知点P事抛物线x²=4y上的一个动点,则点P到点M(2,0)的距离与点P到该抛物线准线的距离之和

答:因为点P到准线的距离等于点P到焦点F的距离:PD=PF当焦点F、P和点M三点成一直线时,距离之和MF为最小值.抛物线x^2=4y的焦点F(0,1)所以:PM+PD=PM+PF=MF=√[(0-2)

已知点p在第一象限角平分线上 且点p与点a(2,4)的距离等于根号34,求点p的坐标

设P点坐标(a,a),其中a大于0两点间距离公式(2-a)^2+(4-a)^2=34解得a=7或a=-1(舍去)p点坐标(7,7)

已知动点P与平面上两定点A(-√2,0),B(√2,0)连线的斜率的积为定值1/2 已知动点P与平

/>(1):设P(x,y)k(PA)=y/(x+√2)K(PB)=y/(x-√2)所以y²/[(x-√2)(x+√2)]=-1/2y²=-(1/2)(x²-2)x

已知圆O:x^2+y^2=4,点P为直线l:x=4上的动点.若点A(-2,0),B(2,0),直线PA,PB与圆O的另一

设P、M、N的坐标分别为(4,m)、(x1,y1)、(x2,y2),则PA的方程为y/(x+2)=m/6,即y=m(x+2)/6代入圆的方程并整理得(m^2+36)x^2+4m^2x+4m^2-144

已知A(2,-4) ,B(6,-4) 动点P属于圆C:x^2+y^2=4,求∠APB的最大值与最小值.

/>可设P(2cost,2sint).数形结合可知:∠APB就是直线PA到直线PB的到角.由到角公式可得:tan∠APB=1/{2-[2cost/(2+sint)]}∴1-[1/(2tan∠APB)]

已知动点P与A(4,-2),B(-2,6),且PA⊥PB,求点P的轨迹方程.

方法1:AB中点为O(1,2),因为PA始终垂直于PB,所以轨迹为圆计算AB长度=√((4-(-2))^2+(-2-6)^2)=10即直径长所以轨迹为以(1,2)为圆心、5为半径的圆:(x-1)^2+