已知函数fx等于2e的x次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:54:22
f(x)=(e的x次方)/(x-1)切点是(0,-1)且:f'(x)=[(x-2)e的x次方]/(x-1)²切线斜率是k=f'(0)=-2切线方程是:y=-2x-1函数f(x)在(-∞,1)
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
2^x+k*2^-x>2^-xk>(2^-x-2^x)/2^-xk>1-2^2x当x=0,k最大值0,当x>0,k0再问:谢谢。可以告诉我fx的图像是什么样的吗?再答:大概这个样,我用画板画了下再问:
加一分之一?f(x)是奇函数,就可以得到f(0)=0你把这个x=0带入就可以啦再问:好吧,谢谢你再答:如果这个方法不行,就用f(-x)=-f(x)一般都可以解决
麻烦图重发,清楚点再问:谢谢不用了知道怎么做了再答:再答:采纳啊
解题思路:分析:先求f(x)的解析式,而题中已给出x>0时的表达式,故先由函数的奇偶性可得x<0和x=0时函数f(x)的解析式,之后再分别解两个不等式.解题过程:
y=x^2-2x+3=(x-1)^2+2所以值域是y≥2
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)
高几的题啊再问:��1��再答:再答:����再问:���ˣ�лл再答:û�£�����������ĩ����Ҳ�ڸ�ϰ
主要讨论f(x)的单调性求导f(x)'=e^x+a分类讨论1.a>=0时f(x)'恒大于0,于是f(x)单调递增,结合fx大于等于0对一切x属于R恒成立,知limf(x)[x-->-无穷]>=0,于是
答:f(x)=(e^x)sinx+f'(0)x∈(0,π/2)因为:f'(0)是常数所以对f(x)求导得:f'(x)=(e^x)sinx+(e^x)cosx令x=0得:f'(0)=0+1=1所以:f(
f(x)=4^x-2^(x+1)+2=(2^x)^2-2*2^x+2设t=2^x>0∴f(t)=t^2-2t+2对称轴是t=2/2=1(1)f(x)=10t^2-2t+2=10t^2-2t-8=0(t
f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+
已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方(1)试写出函数fx的关系式(2)讨论函数fx的单调性(1)解析:∵函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方∴f(-x)
再问:上面的很好,我这个对吗?再答:你这个利用导数表示斜率,利用图像性质分析可以,但是具体考试的时候,答卷上不让画图的,当然如果你不嫌做题时间太长也可以这样利用斜率描述性质;这道题目是反证法的应用;反
只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k
由题意有ƒ(3)=log3(3)=1,ƒ(0)=2^0=1∴ƒ(3)+ƒ(0)=2故选C再问:明白了,谢谢
f'(x)=2x+a>0x>-a/2-a/2=-2a=4