已知函数fx怎么在区间二到正无穷上为增函数,求实数m的取值范围.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:28:16
解判断函数fx在区间(0+∞)上单调递减设x1,x2属于(0,正无穷大)且x1<x2则f(x1)-f(x2)=1/(x1^2+1)-1/(x2^2+1)=(x2^2-x1^2)/(x1^2+1)(x2
f′(x)=3x²-3;(1)f(x)≥0;x≥1或x≤-1;单调递增区间为[1,﹢∞)∪﹙-∞,-1]单调递减区间为[-1,1](2)f(-3)=-27+9=-18;f(2)=8-6=2;
求a的取值范围?原式为f(x)=ax+1/(x+2)=[a(x+2)+1-2a]/(x+2)=(1-2a)/(x+2)+a是个比较明显的反函数,x≠-2只有1-2a1/2
用求导吧,查查求导公式就可以了.f(x)=(lnx/x)-x=此函数的定义域(0,+∞)求导得:f'(x)=[(1-lnx)/x^2]-1=(1-lnx-x^2)/x^2(x>0)当且仅当1-lnx-
设在区间[-1,0]内有m>n,则f(m)-f(n)=(3^m-m^2)-(3^n-n^2)=(3^m-3^n)+(n^2-m^2)∵0≥m>n≥-1,∴(3^m-3^n)>0,(n^2-m^2)>0
1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可
函数f(x)是定义在(-2,5)的减函数吧?复合函数问题先求定义域-2
解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调
解题思路:f(x)为偶函数,定义域关于原点对称,求m=-4/3,求f(x)的指数为2/3,x大于等于0,递增,奇偶性做图象解题过程:
f'(x)=a/x-a=(a-ax)/x=a(1-x)/x定义域是x>0当a>0时令f'(x)>=00
因为有单调性所以ax+2的绝对值等于x-4的绝对值要绝对值是因为偶函数.得ax+2=x-4或者ax+2=4-x再因为f(0)只能等于f(0)所以把x=4带入得a*4+2=0得a=-1/2,x=4其实应
再问:再问:请问这个您可以帮解答一下吗??再答:A={x│-1
由于f(x)=x²+ax+2,并且g(x)=f(x)+x²+1,那么可以得到g(x)=2x²++ax+3,如果g(x)在区间(1,2)上有两个零点,那么有如图所示回答:
f(x)是偶函数,则有f(-x)=f(x)所以对于任意-
f(x)=4sinx[(√3/2)sinx+(1/2)cosx]-1f(x)=2√3sin²x+2sinxcosx-1f(x)=√3(1-cos2x)+sin2x-1f(x)=2sin(2x
什么是4X分之3
(1)m=4,则函数f(x)=x|x-4|+2x-3,当x-4>0时,f(x)=x^2-2x-3,定义域x(4,5],f(x)最小值=1,若x=5,则f(x)最大值=12;当x-40时,f(x)>=1
不需要分类啊,a>2,x属于[1,2],则:x-a再问:能否把整个详细过程写出来感激不尽再答:
奇函数然后取fx2–fx1再答:谢谢。
1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个