已知函数fx=根号3sin(wx fai)的图像关于直线x=π|3对称
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:22:05
派,负四分之派到四分之派,再问:可我不知道怎么写过程。
两倍角公式:sin2a=2sinacosa得2sinacosa=sin2acos2a=cos²a-sin²a=(1-sin²a)-sin²a=1-2sin
f(x)=-√3sin²x+sinxcosx=√3/2cos2x+1/2sin2x-1/2=sin(2x+π/3)+1/2T=2π/2=πf(π/6)=sin(π/3+π/3)+1/2=(1
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
fx=sin²wx+根号3倍的sinwxsin(wx+π/2)=(1-cos2wx)/2+√3sinwxcoswx=1/2-1/2cos2wx+√3/2sin2wx=sin(2wx-π/6)
当f(x)=2时,则√3sin(2x+π/4)+1=2.√3sin(2x+π/4)=1.sin(2x+π/4)=√3/3.2x+π/4=2kπ+arcsin(√3/3).2x=2kπ+arcsin(√
f(x)=1/2-1/2cos2x+√3/2sin2x-1/2=sin(2x-π/6)f(-π/12)=sin(-π/3)=-√3/2(2)-π/6
f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)最小正周期T=π,单调递增区间:2kπ-π/2
即代入可得,x=π/8+kπ(k=1,2,3.)
两条对称轴之间的距离为π∴T/2=πT=2πw=2π/T=2π/2π=1∴f(x)=2√3sin(x+π/3)令x+π/3=π+kπ,k∈Z∴对称中心是x=2π/3+kπ,k∈Z(2)f(A)=2√3
答:f(x)=2sin(x-π/3)cosx+sinxcosx+√3(sinx)^2=sin(x-π/3+x)+sin(x-π/3-x)+sinxcosx+(√3/2)(1-cos2x)=sin(2x
答:y=f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2*[(√3/2)sin2x+(1/2)cos2x]-1=2sin(2x+π/6)-1y=f(x)关于
已知函数f(x)=根号3sin(wx+φ)++(w>0,-π/2x=(π-2φ)/4=π/3==>φ=-π/6∴f(x)=√3sin(2x-π/6)(2)解析:设f(a/2)=√3/4,(π/6<a<
解析:∵函数f(x)=2sinwx(w>0)在区间[-π/4,2π/3]上单调递增∵函数f(x)初相为0∴最小值点在Y轴左,最大值点在Y轴右,二者与Y轴之距相等函数f(x)最小值点:wx=2kπ-π/
第一题A.第二题B
(1)化简可得f(x)=(sin(x/2))^2+((√3)/2)sinx-0.5f'(x)=sin(x/2)cos(x/2)+((√3)/2)cosx=sinx+√3cosx=0√3cosx=-si
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(x/2)cos(x/2)+√3*sin²(x/2)+√3/2=1/2*sinx+√3/2*(1-cosx)+√3/2=1/2*sinx-√3/2*cosx+√3=sin(x
fx=2根号3sinxcosx+1-2sin^2x=2sin(2x+π/6)周期为π