已知函数fx=二倍根号三sinwx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:13:54
f(x)=[(cosx)^2-(sinx)^2]+√3sin2x=cos2x+√3sin2x=2sin(2x+π/6),最小正周期T=π,由-π/2+2kπ≤2x+π/6≤π/2+2kπ,k∈Z解得:
f(x)=-√3sin²x+sinxcosx=√3/2cos2x+1/2sin2x-1/2=sin(2x+π/3)+1/2T=2π/2=πf(π/6)=sin(π/3+π/3)+1/2=(1
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
f(x)=cos2x+√3sin2x+1=2(sin2x*√3/2+cos2x*1/2)+1=2(sin2xcosπ/6+cos2xsinπ/6)+1=2sin(2x+π/6)+1所以T=2π/2=π
f(x)=1/2-1/2cos2x+√3/2sin2x-1/2=sin(2x-π/6)f(-π/12)=sin(-π/3)=-√3/2(2)-π/6
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)最小正周期T=π,单调递增区间:2kπ-π/2
fx=2cosxsin(x+π/3)-√3sin^2x+sinxcosx+1=2cosx(√3/2cosx+1/2sinx)-√3sin^2x+sinxcosx+1=√3cos^2x-√3sin^2x
答:f(x)=2sin(x-π/3)cosx+sinxcosx+√3(sinx)^2=sin(x-π/3+x)+sin(x-π/3-x)+sinxcosx+(√3/2)(1-cos2x)=sin(2x
答:y=f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2*[(√3/2)sin2x+(1/2)cos2x]-1=2sin(2x+π/6)-1y=f(x)关于
f(x)=2sinx/2cosx/2√3cosx=sin(x/2x/2)√3cosx=sinx√3cosx=√(1^2√3^2)sin(xπ/3)=2sin(xπ/3)函数f(x)的最小正周期T=2π
cos(A-C)-cos(A+C),cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=2sinAsinC=2sinB所以sinAsinC=sinBf(C)=2sin(2C+π
f(x)=sinx-cosx=√2sin(x-4/π)(1).T=2π(2).f(x)max=√2f(x)min=-√2(3).sina+cosa=√2cos(a-π/4)cos(a-π/4)=√[1
f(x)=(sin²x+cos²x)+2cos²x+2√3sinxcosx-2=1+1+cos2x+√3sin2x-2=√3sin2x+cos2x=2sin(2x+π/6
第一题A.第二题B
(1)化简可得f(x)=(sin(x/2))^2+((√3)/2)sinx-0.5f'(x)=sin(x/2)cos(x/2)+((√3)/2)cosx=sinx+√3cosx=0√3cosx=-si
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(x/2)cos(x/2)+√3*sin²(x/2)+√3/2=1/2*sinx+√3/2*(1-cosx)+√3/2=1/2*sinx-√3/2*cosx+√3=sin(x
fx=2根号3sinxcosx+1-2sin^2x=2sin(2x+π/6)周期为π