已知函数fx=lg(x a x-1)其中a是大于0的常数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:49:56
已知函数fx=lg(x a x-1)其中a是大于0的常数
已知函数y=fx是定义在r上的奇函数,x>0,fx=x*lg(1+x),求x

x0,∴f(-x)=(-x)*lg(1-x)=-x*lg(1-x)∵f(x)是奇函数∴f(x)=-f(-x)=x*lg(1-x)

Fx=lg(1+x)-lg(1-x)1,判断函数fx的奇偶性 2,若f(a)>0求实数a的取值范围

1.f(x)=lg(1+x)-lg(1-x)=lg(1+x)/(1-x)f(-x)=lg(1-x)-lg(1+x)=lg(1-x)/(1+x)=-lg(1+x)/(1-x)=-f(x)所以是奇函数2.

已知函数f(x)=lnx+1−xax,其中a为大于零的常数.

f′(x)=ax−1ax2(x>0),(1)由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≥1x在[1,+∞)上恒成立,又∵当x∈[1,+∞)时,1x≤1,∴a≥1,即a的取值范围为[1,+∞)

已知函数fx=lg(a+1)x+1 求定义域

零和负数无对数:(a+1)x>0a=-1时无解;a<-1时,定义域x<0;a>-1时,定义域x>0

函数fx=根号下1-x+lg(x+1)的定义域是

定义域须满足:根号下非负,即1-x>=0,得x0,得x>-1综合得定义域为(-1,1]

fx=lg(√x2+1 -x)

f(-x)=lg(√x2+1+x)=lg(1/(√x2+1-x))=-lg(√x2+1-x)=-f(x)所以在定义域范围内为奇函数.

已知函数fx=lg(1+x)/(1-x) 求使fx>0的x的取值范围

定义域1+x>0x>-1所以-10则lg(1+x)>0=lg11+x>1所以0

函数fx=根号下1-x+lg(x-1)的定义域是

定义须满足:根号内非负,即1-x>=0,得x0,得x>1因此不存在这样的x所以定义域为空集.

已知函数fx=lg(ax-2x+1)的值域为R,求实数a的范围

解由fx=lg(ax^2-2x+1)的值域为R,知真数ax^2-2x+1能取完所有正数,故当a=0时,真数为-2x+1能取完所有正数,当a≠0时,真数ax^2-2x+1能取完所有正数知a>0且Δ≥0即

(2012•信阳模拟)已知函数f(x)=1−xax+lnx.

(1)∵f(x)=1−xax+lnx∴f′(x)=ax−1ax2(a>0)∵函数f(x)在[1,+∞)上为增函数∴f′(x)=ax−1ax2≥0对x∈[1,+∞)恒成立,∴ax-1≥0对x∈[1,+∞

已知函数fx=lg【(x+3) /(x-3)】求反函数

答:y=f(x)=lg[(x+3)/(x-3)]所以:(x+3)/(x-3)=10^y所以:(x-3+6)/(x-3)=10^y1+6/(x-3)=10^y6/(x-3)=10^y-1x-3=6/(1

函数fx =lg (x +1)   若0

(1)函数替换,对数运算公式应用,不等式计算f(1-2x)=lg((1-2x)+1)=lg(2-2x)f(1-2x)-f(x)=lg(2-2x)-lg(x+1)=lg((2-2x)/(x+1)0

已知函数fx=lg[(x²+1)/|x|](x不等于0)

这句话对,fx在区间(-1,0),(1,正无穷)上是增函数

已知函数f(x)=xax+b

f(x)=xax+b=x,整理得ax2+(b-1)x=0,有唯一解∴△=(b-1)2=0①f(2)=22a+b=1,②①②联立方程求得a=12,b=1∴f(x)=2xx+2f(-3)=6,∴f[f(-

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=lg(a^x-b^x)(a>1>b>0),求fx的定义域,若fx在(1,正无穷大)上递增且恒取正值,求a,

定义域满足a^x-b^x>0,即(a/b)^x>1,因a/b>1,故有x>0即定义域为x>0因为a^x递增,b^x递减,所以a^x-b^x递增因此f(x)关于x递增当x>1时,有f(x)>f(1)=l

函数f(x)=lg [(kx-1)/(x-1)] ,k>0.求fx的定义域

真数(kx-1)/(x-1)>0因k>0,故(x-1/k)(x-1)>0(1)当1/k=1即k=1时,(x-1)(x-1)>0解得x≠1(2)当1/k>1即0

已知函数f(x)=1−xax+lnx.

(1)当a=1时,f(x)=1x+lnx−1,f′(x)=−1x2+1x=x−1x2(x>0),令f′(x)=0得x=1.f′(x)<0得0<x<1,f′(x)>0得1<x,∴f(x)在(0,1)上单

已知函数fx= -1,x

解当x≥1时,得x-1≥0,即f(x-1)=1此时不等式xf(x-1)≤1转化为x*1≤1即x≤1此时xf(x-1)≤1的解x=1当x<1时,x-1<0即f(x-1)=-1此时不等式xf(x-1)≤1