已知函数fx=asin(wx φ)的最小正周期为π,当x=2π 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:15:09
已知函数fx=asin(wx φ)的最小正周期为π,当x=2π 3
已知函数fx=Asin(wx+φ)(A>0,w>0,φ小于π/2)的部分图像如图所示,则fx的函数解析式是

解由题知A=3T=4(π/2-(-π/2))=4π又由T=2π/w故2π/w=4π故w=1/2故f(x)=3sin(1/2x+φ)其图像过点(-π/2,3)知3sin(1/2x(-π/2)+φ)=3即

已知函数y=Asin(wx+φ)(A>0,w>0,lφl

T=2π/3=2π/ω,∴ω=3.∵最小值为﹣2,∴A=2.将﹙5π/9,0﹚代入函数,可得:2sin(5π/9×3+φ)=0,解得:φ=kπ-5π/3.∵φ的绝对值<π,∴﹣π<φ<π,即:∵﹣π<

已知函数y=Asin(wx+φ)(其中A>0,W>0,φ的绝对值

T=π=2π/w-->w=2最高点的纵坐标为3/2-->A=3/2对称轴方程是x=π/6-->因为sin函数的对称轴在π/2+kπ,上,所以φ=-π/6+kπ+π/2--->φ=π/3y=1.5sin

函数y=Asin(wx+φ)

函数y=Asin(wx+φ)由2kπ-π/2

已知函数f(x)=Asin(wx+φ)+b(w>0,│φ│

A=(最大值-最小值)/2=2,b=(最大值+最小值)/2=1,周期T:T/2=2π/3-π/6=π/2,T=π,W=2,所以,f(x)=2sin(2x+φ)+1,代入最大值点(π/6,3),化简,s

已知函数y=Asin(wx+p)(A>0,|p|

把(-π/8,2)代入到原方程:2=2sin(-π/4+p)因为|p|

已知函数f(x)=Asin(wx+φ)(A>0,w>0,│φ│

周期是(x0+π/2-x0)*2=π所以T=2π/w=πw=2最大值为3所以A=3f(x)=3sin(2x+φ)f(0)=3sinφ=3/2|φ|

已知函数y=Asin(wx+φ)(A>0,w>0,|φ|

已知函数y=Asin(wx+φ)(A>0,w>0,|φ|0,w>0,|φ|5π/3+φ=0==>φ=-2π/3∴y=2sin(3x-2π/3)当函数反相时,也适合,即y=-2sin(3x-2π/3)=

已知函数y=Asin(wx+φ)的图像如图所示,

用“派”代表圆周率,抱歉拉波谷是(-1,y),且过(2,0)所以四分之一个周期是3,一个周期是12,所以w=2派/12=派/6因为(2,0)是上升趋势的零点,所以2w+φ=0,所以相位角φ=-2w=-

已知函数y=Asin(wx+φ)+b(A>0,w>0,|φ|

A+b=3、-A+b=0得:A=b=3/2半个周期是:5π/6,则:T=5π/3,得:w=6/5此时:f(x)=(3/2)sin(6/5x+φ)+(3/2)以点(π/2,0)代入,得:(3/2)sin

已知函数fx=Asin(wx+φ) (x∈R,A>0,w>0,0

A=2T=4*[π/6-(-π/6)]=4π/3w=2π/(4π/3)=1.5f(x)=2sin(1.5x+φ)2sin(1.5*π/6+φ)=2π/6+φ=π/2φ=π/3f(x)=2sin(1.5

已知函数fx=Asin(wx+α)+1(w>0.A>0 0

已知函数fx=Asin(wx+α)+1(w>0.A>00

已知函数fx=Asin(wx+φ)(A>0,w>0,0

解析:因为f(x)=Asin(wx+φ)(A>0,w>0,0w=2所以,f(x)=2sin(2x+φ)==>f(π/12)=2sin(π/6+φ)=2==>φ=π/3所以,f(x)=2sin(2x+π

已知函数fx=Asin(wx+Ф)(A>0,w>0,|Ф|

我已经算出函数y=f(x)+f(x+2)的简式y=2根号2cosπ/4x求当x∈[-6,-2/3]函数y的最大值与最小值以及相应的x值解析:∵y=2√2cos(π/4x)∴函数y周期为T=8,所以,当

已知函数fx=Asin(wx+ψ)+n的周期为π,f(π/4)=√3+1,且fx的最大值为3

根据周期为π,可得w为2.由f(π/4)=Asin(2*π/4+ψ)+n=Asin(π/2+ψ)+n=Acosψ+n=√3+1,由fx的最大值为3可得A+n=3可得n=1,A=2,ψ=π/6所以,f(

已知函数fx=2sin(wx+

第一题A.第二题B

已知函数fx=Asin(wx+ )+B的一系列对应值如下表

已知函数fx=Asin(wx+)+B的一系列对应值如下表X-π/6π/35π/64π/311π/67π/317π/6Y-1131-113(1)根据表格提供的数据求函数y=f(x)的解析式(2)若对任意

已知函数y=Asin(wx+φ) ,|φ|

当x=π/12时,取得最大值为3,当x=7π/12时,取得最小值-3得到A=3T/2=7π/12-π/12所以T=πw=2π/12*2+φ=kπ+π/2,|φ|

已知函数f(x)=Asin(wx+φ)+B(A>0,φ>1,|φ|

T=π,w=2A=2,B=1Φ=-π/6f(x)=2sin(2x-π/6)+1f(kx)=2sin(2kx-π/6)+1周期为2π/32k=3k=3/2f(kx)=2sin(3x-π/6)+1x∈[0