已知函数f(x)=ax-的最大值不大于六分之一,又当

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:28:14
已知函数f(x)=ax-的最大值不大于六分之一,又当
已知函数f(x)=x^3+3ax-1的导函数为f'(x),g(x)=f'(x)-ax-3

f'(x)=3x^2+3ag(x)=3x^2-ax-3+3a对满足-1≤a≤1的一切的值,都有g(x)

已知函数f(x)=x^3+3ax-1的导函数为f '(x),又g(x)=f '(x)-ax-3

g(x)=3x^2+3a-ax-3若以a为变量,则g(a)是关于a的一次函数.故要使对于满足-1≤a≤1的一切a,都有g(x)再问:第一步不太懂再答:x(6x-a)+lnx=6x^2-6ax+lnx>

已知函数f(x)=x2-2ax+3.若函数f(x)的单调减区间为(-无穷大,2),求函数f(x)在区间[3,5]上的最大

f(x)=x^2-2ax+3开口向上,对称轴x=2a/2=a单调减区间为(-无穷大,2)在对称轴左侧∴a=2∴f(x)=x^2-4x+3开口向上,对称轴x=2区间[3,5]在对称轴右边,单调增,最大值

已知函数f(x)=lnx+ax,求f(x)的单调区间

求单调区间,第一步就应该想到求导f'(x)=1/x+a有参数当然就要不厌其烦的讨论啦①当a=0则f(x)在x>0时递增,x

已知函数f(x)=lg(ax^2-ax+1)

值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax

已知函数f(X)=ax+Inx

先求g(x)的最小值,对任意的f(x)

已知函数f(x)=inx+ax+1.(1)若f(x)在(0,2)为增函数,求a范围.(2)求f(x)在(0,2]上的最大

f(x)=lnx+ax+1(x>0),f'(x)=1/x+a=(1+ax)/x.(1)若f'(x)>0,则1+ax>0.1+ax>0在区间(0,2)上成立,则1+a*0>=0且1+a*2>=0,解得:

已知函数f(x)=(1/3)^(ax^2-4x+3) 1 ,已知a=-1,求函数f(x)的单调区间.2,若f(x)有最大

1.a=-1f(x)=(1/3)^(-x^2-4x+3)=3^(x^2+4x-3)设u=x^2+4x-3y=3^u增函数u在(-无穷,-2)减函数所以f(x)在(-无穷,-2)减函数u在(-2,+无穷

已知二次函数f(x)=ax的平方+x有最小值.不等式f(x)

因为f(x)是二次函数且有最小值所以图象开口向上即a>0(1)f(x)

已知函数f(x)=根号下1-ax,求函数f(x)的定义域

a=0时定义域是Ra不等於0时1-ax>=0

已知函数f(x)=alnx-ax-3,讨论f(x)的单调性

f'(x)=a/x-a=(a-ax)/x,x>0,若a=0,则函数在定义域内都等于-3,若a0,则在(0,1]递增,在(1,正无穷)递减

已知函数f(x)=x的平方/ax+b为奇函数,f(1)

已知函数f(x)=(x^2+c)/(ax+b)为奇函数,f(1)

已知函数f(x)=x^3+3ax-1的导函数为f'(x),g(x)=f'(x)-ax-5

这两道题不一样,前一道g(x)=f'(x)-ax-3,这一道是g(x)=f'(x)-ax-51.所以g(x)=3x²-ax+3a-5=(3-x)a+3x²-50,即x

已知函数f(x)=ax

偶函数,则奇次项系数为0,即b=0且定义域对称,即a-1+2a=0,得:a=1/3故f(x)=1/3*x^2+1,定义域为[-2/3,2/3]值域为:[1,31/27]

已知函数f(x)=ax/(x^2+1)+a,求f(x)的单调区间

答:f(x)=ax/(x^2+1)+a求导得:f'(x)=a/(x^2+1)-ax*2x/(x^2+1)^2=a(1-x^2)/(x^2+1)^21)当a=0时,f(x)=0为常数函数;2)当a

已知函数f(x)=ex(x2+ax+1) 求函数f(x)的极小值

一别函数好多年...不过那个x2应该是X^2吧,判断△,根据这抛物线的开口,和与y轴的交叉点儿,还有你试试求导数,应该更快点儿,有一点就是要判断准e和a的取值范围就ok了,手头儿没笔,不好意思.

已知二次函数f(x)=ax²+4x+3a,且f(1)=0 求函数f(x)在【t,t+1】上的最大

f(1)=a+4+3a=0,a=-1,f(x)=-x²+4x-3,对称轴为x=2,(1)当t≤1时,t+1≤2,区间[t,t+1]在对称轴的左边,f(x)是增函数,最大值为f(t+1)=-t

已知函数f(x)=ax(x

由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递

已知函数f(x)=|x-a|,g(x)=ax(1)判断函数f(x)的奇偶性

(1)a=0时,f(x)=|x|是偶函数a≠0时,f(x)≠-f(-x)或f(-x),所以非奇非偶(2)a=2,那么g^2(x)f(x)=4x即是:a^2*x^2f(x)=4x,那么代入a=2得到:x