已知函数f x=e^x-mx^2-2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:05:10
已知函数f x=e^x-mx^2-2x
已知fx=x2-2mx+m+1,x属于【0,4】,m是实常数,求函数fx的最小值和最大值

f(x)=(x-m)^2-m^2+m+1(1)m0时f(x)在【0,4】上递减x=0时f(x)最大=m+1x=4时f(x)最小=17-7m(3)m在【0,4】时x=m时f(x)最小=-2m^2+m+1

已知函数Fx=e的x次方+2x的平方-3x.(1)判断Fx在区间【0,1】上极值点情形及个数

求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点

已知函数fx=e^x-1/e^|x|,其中e是自然对数的底数

证明:当x=0时,f(x)=1-1=0,从而f(-x)*f(x)=0;  当x0时,f(-x)=e^(-x)-1/e^x=e^(-x)-e^(-x)=0,从而f(-x)*f(x)=0*f(x)=0; 

二次函数fx满足fx+1-fx=2x,且f0=1 1.求fx的解析式 2.若gx=mx+2,Fx=fx-gx.求Fx在[

/>设f(x)=ax²+bx+c,因为f(0)=0+0+c=1,所以f(x)=ax²+bx+1,所以f(x+1)-f(x)=a(x+1)²+b(x+1)+1-(ax

已知函数fx=x^2/2+lnx 求fx在区间(1,e)上的最大值最小值

1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可

已知函数fx=(ax+1)(x+1)e^x,a属于R,若函数

解题思路:导数的几何意义该点处的导数值就是斜率解题过程:,

已知函数fx=ax²-e的x次方

因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得

已知函数fx=lnx+ax^2+x,gx=e^x-ax

再问:...好像不太对

已知函数fx=(x-k)e^x,求fx的单调区间?

f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)

已知函数fx=(x-k)^2e^x.若方程fx=4e恰有两个不同的解,求实数k的值

令F(x)=e^x(x-k)^2-4e;求导知F(x)从(-∞,k-2]单调增,[k-2,k单调减],[k,∞)单调增,且F(k)<0;当F(k-2)>0时则会出现三个根,当F(k-2)&

已知函数fx的导函数f’x,满足xf'x+2fx=(lnx)/x,且 f(e)=1/(2e),则fx的单调性情况为?

xf'(x)+2f(x)=(lnx)/x,定义域为x>0===>x²*f'(x)+2xf(x)=lnx===>[f(x)*x²]'=lnx===>f(x)*x²=∫lnx

已知函数fx的定义域为R,f'x是fx的导函数,且f'x=e的x次方(x²-3x+2).(1)求fx的单调区间

f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+

急 已知函数fx=-x的平方+2ex+t-1,gx=x+x分之e的平方

1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x²-2mx+1,求函数fx在[0,4]上的最小值.

f(X)=(X-m)^2+1-m^2,对称轴X=m,①当m≤0时,最小f(0)=1,②当04时,最小f(4)=5-8m.

已知函数fx=inx-1/2mx∧2-x若fx在x=3处取得极值,求m的值

原题是:已知函数f(x)=lnx-(1/2)mx^2-x,若f(x)在x=3处取得极值,求m的值.f'(x)=1/x-mx-1(x>0)  由已知得f'(3)=1/3-3m-1=-3m-2/3=0  

已知函数f(x)=mx^2-mx+m

(1)当m属于[-2,2],f(x)<0恒成立即(x²-x+1)m0∴矛盾(2)(2)当x属于[1,3],f(x)<0恒成立,即m(x²-x+1)0恒成立,则m

已知a属于R,求函数fx=x^2e^ax的单调区间

F(x)=x^2e^(ax)求导得:f’(x)=e^(ax)+ax²e^(ax)=e^(ax)(ax²+2x)e^(ax)恒大于0①a>0时,ax²+2x>0,解得x>0

已知a属于R,求函数fx=x^2e^ax的单调递增区间

求导数e^ax(ax2+2x)e^ax恒大于0,所以只要讨论ax2+2x即可x(ax+2)当a大于0时,递增区间就是x小于-2/a或者x大于0当a等于0时,x大于0递增当a小于0时,递增区间是x大于0