已知函数f x =lg(x a x-2),其中a是大于0的常数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:07:17
已知函数f x =lg(x a x-2),其中a是大于0的常数
已知函数y=fx是定义在r上的奇函数,x>0,fx=x*lg(1+x),求x

x0,∴f(-x)=(-x)*lg(1-x)=-x*lg(1-x)∵f(x)是奇函数∴f(x)=-f(-x)=x*lg(1-x)

Fx=lg(1+x)-lg(1-x)1,判断函数fx的奇偶性 2,若f(a)>0求实数a的取值范围

1.f(x)=lg(1+x)-lg(1-x)=lg(1+x)/(1-x)f(-x)=lg(1-x)-lg(1+x)=lg(1-x)/(1+x)=-lg(1+x)/(1-x)=-f(x)所以是奇函数2.

已知fx=lg(x^2-2ax-a)在区间(-00,-3)上是减函数,1.求实数a的取值范围;

∵fx=lg(x)在定义域内单调递增∴若fx=lg(x^2-2ax-a)在(-∞,-3)上单调递减,则x^2-2ax-a在(-∞,-3)上单调递减又∵gx=x^2-2ax-a开口向上 &nb

已知函数f(x)=lnx+1−xax,其中a为大于零的常数.

f′(x)=ax−1ax2(x>0),(1)由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≥1x在[1,+∞)上恒成立,又∵当x∈[1,+∞)时,1x≤1,∴a≥1,即a的取值范围为[1,+∞)

已知函数fx=lg(a+1)x+1 求定义域

零和负数无对数:(a+1)x>0a=-1时无解;a<-1时,定义域x<0;a>-1时,定义域x>0

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=lg(ax^2+2x+11)的值域为R,则a的范围为?若值域为[1,+无穷),则a范围

令g(x)=ax^2+2x+11f(x)值域为R,表明g(x)的值域包含所有正值.因此有a>=0.当a>0时,其最小值应不大于0,即:delta=4-44a>=0,得a

已知函数fx=lg(1+x)/(1-x) 求使fx>0的x的取值范围

定义域1+x>0x>-1所以-10则lg(1+x)>0=lg11+x>1所以0

已知函数fx=lg(ax-2x+1)的值域为R,求实数a的范围

解由fx=lg(ax^2-2x+1)的值域为R,知真数ax^2-2x+1能取完所有正数,故当a=0时,真数为-2x+1能取完所有正数,当a≠0时,真数ax^2-2x+1能取完所有正数知a>0且Δ≥0即

已知函数fx=lg(6-2x)的定义域为集合A,g(x)=根号x+1的值域为集合B

解1由题知6-2x>0即x<3即A={x/x<3}B={x/x≥-1}故A∩B={x/-1≤x<3}2由B∪C=B知C是B的子集由C={x丨m-1≤x≤m+2}B={x/x≥-1}知m-1≥-1即m≥

已知函数fx=lg【(x+3) /(x-3)】求反函数

答:y=f(x)=lg[(x+3)/(x-3)]所以:(x+3)/(x-3)=10^y所以:(x-3+6)/(x-3)=10^y1+6/(x-3)=10^y6/(x-3)=10^y-1x-3=6/(1

函数fx =lg (x +1)   若0

(1)函数替换,对数运算公式应用,不等式计算f(1-2x)=lg((1-2x)+1)=lg(2-2x)f(1-2x)-f(x)=lg(2-2x)-lg(x+1)=lg((2-2x)/(x+1)0

已知函数fx=lg[(x²+1)/|x|](x不等于0)

这句话对,fx在区间(-1,0),(1,正无穷)上是增函数

已知函数f(x)=xax+b

f(x)=xax+b=x,整理得ax2+(b-1)x=0,有唯一解∴△=(b-1)2=0①f(2)=22a+b=1,②①②联立方程求得a=12,b=1∴f(x)=2xx+2f(-3)=6,∴f[f(-

已知函数fx=lg根号下4x平方+b +2x b为常数 y=fx是奇函数 求b

f(x)+f(-x)=lg根号下4x^2+b+2x+lg根号下4x^2+b-2x=lgb=0b=1

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

已知函数fx=2sin(wx+

第一题A.第二题B

函数fx=根号-x²+2分之lg(x+1)的定义域为

解由题知-x^2+2>0且x+1>0即x^2<2且x>-1即-√2<x<√2且x>-1即-1<x<√2故函数的定义域为{x/-1<x<√2}.

已知函数f(x)=1−xax+lnx.

(1)当a=1时,f(x)=1x+lnx−1,f′(x)=−1x2+1x=x−1x2(x>0),令f′(x)=0得x=1.f′(x)<0得0<x<1,f′(x)>0得1<x,∴f(x)在(0,1)上单