已知关于x的一元二次方程4kx² 2kx 5 k=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:59:44
(1)要使方程kx²-2x+1=0有两不等实根,则有根判别式Δ>0,且k≠0即4-4k>04k
(1)△=(4k+1)^2-4k·(3k+3)=4k^2-4k+1=(2k-1)^2>0(因为,k是整数,2k-1≠0)所以方程有俩个不相等的实数根.(2)x1+x2=(4k+1)/kx1·x2=(3
K^2-4*(-3)>0;则有K^2+12>0;即无论K为何实数,不等式恒成立;则方程有两个不相等的实数根!
x=1、x=(k-3)/k
x^2-2kx+(1/2)k-2=0x1+x2=kx1x2=(k-2)/2x1^2-2kx1+2x1x2=(2-k)/2+2*(k-2)/2=(k-2)/2=5k=12
x1+x2=-k1)x1*x2=-62)x1+5+x2+5=k3)(x1+5)*(x2+5)=64)由1),3)可解得k=5但是此时不满足4),所以k无解.
x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.则:x1+x2=-(-4k)/4k=1x1x2=(k+1)/4k1)(2x1-x2)(x1-2x)=2x1^2+2x2^2-5x1x2
(1)证:判别式△=b²-4ac=k²+4恒﹥0所以方程有两个不相等的实数根(2)由韦达定理得x1+x2=-kx1x2=-1又已知x1+x2=x1x2所以有-k=-1得k=1再问:
(2)x1+x2=-4/kx1*x2=-3/k∴2x1+2x2-3/x1*x2=2*(-4/k)-3/(-3/k)=k-8/k假设k-8/k=2成立则k-2k-8=0k1=4k2=-2∵k>-4/3且
x²+kx-3=0b²-4ac=k²-4(-3)=k²+12>0∴总有两个不相等的实数根x²+2x-3=0x²+2x+1-4=0(x+1)&
(k-1)x²-根号1-kx+1/4=0[√(k-1)x-1/2]=0x=1/2√(k-1)=√(k-1)/2(k-1)如果本题有什么不明白可以追问,请及时点击右下角的【采纳为满意回答】按钮
4kx2+2kx+5+k=0两个相等的实数根则b2-4ac=0X1=x2=-2k/8k=-1/4再问:-2k8k哪来的啊再答:一元二次方程的根求x=(-b±根号(b2-4ac))/2aB为一次项系数a
(1)Δ=4-4k(2-k)≥01-2k+k²≥0(k-1)²≥0恒成立所以k可取任意实数.(2)x=(-2±2(k-1))/(2k)x=(-1±(k-1))/kx1=(k-2)/
1.方程的根为X1=(-k+根号k平方+4)/2X2=(-k-根号k平方+4)/2无论K为何值X1都不=X22.将方程的两个根和第二问所给条件列成方程组,即可求出k=1
已知关于X的一元二次方程x^2+kx-1=0(1)求证:方程有两个不相等的实数根证明:(b²-4ac)=k²+4>0(2)设方程的两根分别为x1,x2,且满足x1+x2=x1*x2
(1)∵△1=(2k-1)2-4(k2-2k+132)=4k-25≥0,∴k≥254,∵△2=(k+2)2-4(2k+94)≥0,∴k2-4k-5≥0,(k-5)(k+1)≥0,∴k≥5或k≤-1,∴
1)将x=1代入方程得:1+2k+k^2-1=0k(k+2)=0得k=0或-22)△=4k^2-4(k^2-1)=4>0因此方程总有2个不等实根
(1)证明:∵a=1,b=k,c=-3,∴△=k2-4×1×(-3)=k2+12,∵不论k为何实数,k2≥0,∴k2+12>0,即△>0,因此,不论k为何实数,方程总有两个不相等的实数根.(2)当k=
由题知,已知x₁,x₂是关于x的一元二次方程4kx²-4kx+k+1=0的两个实数根所以,x₁+x₂=-(-4k)/(4k)=1x₁
判别式为:D=4k^2-16k(5+k)=0k=-20/3(k!=0)方程为:16x^2+8x+1=0解方程得根为:x=-1/4