已知两向量α1=(1,2,-1)T, α2=(4,0,k)t正交,则k=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:35:42
|a+b|²=|a|²+2a*b+|b|²=1+2×1×√2×cos135°+(√2)²=3-2=1,则|a+b|=1
a*b=|a|*|b|*cos60°=2*1*1/2=1向量2a向量+kb向量与a向量+b向量垂直所以(2a+kb)(a+b)=02a²+2ab+kab+kb²=02*4+2*1+
a向量的绝对值=2(a向量-b向量)(a向量+b向量)=1|a|=2(|a|-|b|)(|a|+|b|)=1|a|^2-|b|^2=1/2|a|^2=1|向量b|=2分之根号2(1)求(a-b)^2+
若向量a、向量b的夹角为135º|向量a+向量b|=√a^2+2ab+b^2=1若向量a平行向量b求向量a.向量b当a,b同向时为√2反向时为-√2
证明:因为向量AM+MN+ND+DA=0向量BM+MN+NC+CB=0二式相加得:2向量MN+(AM+BM)+(ND+NC)+(DA+CB)=0又M,N是中点,故向量AM+BM=0,ND+NC=0所以
是三维坐标系的吗?解题思路:想象该三个向量是墙角的三条线,那么他们两两所成的角为直角相等.分析:将向量a、b、c放入坐标系中,且他们分别在x轴、y轴、z轴上,他们的交点设为O(0,0,0),则他们的起
c=(1,1/2-k/2);d=(1,1);∴cos=(1+1/2-k/2)/√(1+(1/2-k/2)²)√(1+1)=cos45°=√2/2;∴(3/2-k/2)/√2√(1+(1+k&
已知向量B=(6,1),打漏.应该是已知向量AB=(6,1),设A(0,0),C(x,y).则B(6,1),D(x-2,y-3)∵BC‖DA.∴(x-6)/(x-2)=(y-1)/(y-3)2x+4y
a·b=|a||b|cosx因为两向量平行所以cosX为1答案为1*根号2=根号2这么详细表太感动
两个方向,各两个;将AB单位化,就有两个方向的平行单位向量:(-√5/5,2√5/5),(√5/5,-2√5/5)求出任意垂直的向量,如(2,1)将其单位化,就有两个方向的垂直单位向量:(2√5/5,
(向量a-向量b)^2=a^2-2ab+b^2=1+4-2*(cosa+2sina)+1=-2(2sina+cosa)+6=-2√5sin(a+φ)+6.其中tanφ=1/2,辅助角公式最大值=6+2
a.b=|a|*|b|*cosα=-1/3|b|^2再问:我的填空题
DE=AE-AD=1/2AC-1/2AB=1/2(AC-AB)=1/2BC
∵AB=3 BC=AD=2 CD=1∴∠DAB=∠ABC=60°∴向量AB*向量AD=|AB|·|AD|cos60°=3/2 向量AB*向量DC=|AB|·|DC|cos0°=3 向量AB*向量BC=
两个向量的夹角不可能是二分之三派.是2π/3就按这个来求.由已知,a*b=3*1*cos(2π/3)=-3/2,因此m*n=(3a-b)*(2a+2b)=6a^2+4a*b-2b^2=6*9+4*(-
题目似乎应为a=-3i+2j,a^2=13,b^2=17,向量(a+b)(a-b)=a^2-b^2=13-17=-4.
c=(1,(1-k)/2)d=(1,1);所以cd=1+(1-k)/2;所以cos45°=√2/2=cd/|c|×|d|=[1+(1-k)/2]/√(1+(1-k)²/4)×√(1+1);所
令C=ta+vb(1)(注:t.v是实数,a,b是向量,以下一样)向量a=(1,2),向量B=(-2,3),向量C=(4,-7),(4,-7)=t(1,2)+v(-2,3)根据对应相等得到:4=t-2
向量AB=(6,1)向量CD=(-2,-3)∵BC//DA∴DA=mBC又AB+BC+CD+DA=0向量∴(6,1)+BC+(-2,-3)+mBC=(0,0)(4,-2)+(1+m)BC=(0,0)∴
设c=a+b,d=a-b,则|c|=2,|d|=3,cos=1/4.a=(c+d)/2,b=(c-d)/2.|c+d|=sqrt((c+d)^2)=sqrt(c*c+2c*d*cos+d*d)=sqr