已知三角形ABD相似三角形次A次B次C,AD,BE是三角形ABD的高
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:49:57
这道题是这样的.因为三角形A1B1C1和三角形A2B2C2全等.全等三角形满足:角:A1=A2,B1=B2,C1=C2.边:A1C1=A2C2,A1B1=A2B2,B1C1=B2C2.我们只用关于角的
1.∵a/a1=k,c=a1∴a/c=k∴a=kc2.c=a/kc1=c/k=a/k²a/k和a/k²都是正整数例如:a=27,k=3∴c=a1=a/k=9,c1=a/k²
因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE
因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE
证明:(1)∵△ABC∽△ADE∴AB/AC=AD/AE,∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即:∠BAD=∠CAE∴△ABD∽△ACE(两组对应边的比相等,且相应的夹角相等)(
解题思路:利用分母有理化解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
解题思路:相似三角形的性质与判定,也利用了三角形的面积公式求线段的长.解题过程:见附件最终答案:略
2:35:410:1515:1210:125:6
如图,△ADE和△ABC有公共的顶点A,∠1=∠2,∠ABC=∠ADE.则△ABD∽△又因为∠1=∠2所以△ABD∽△ACE(两边对应成比例且夹角相等的三角形相似
1、∵AD∥BC∴∠ADB=∠DBC∵∠bad=90度,bd垂直dc∴∠bad=∠BDC∴三角形ABD与三角形DCB相似2、由1得⊿ABD∽⊿DCB∴AD/BD=BD/BC∴bd平方=ad*bc
本题缺少条件!理由:AB=AC,则∠ABC=∠ACB;故∠ABD=∠DCE.(等角的补角相等)若⊿ABD∽⊿DCE,则应该有:∠ADB=∠DEC.可知:∠ADB+∠CDE=∠DEC+∠CDE=60度=
没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE
因为△ABD相似于△CDO且AB:CD=1:2所以BO:OD=1:2所以BO:BD=BO:(BO+OD)=1:3
/>CE与BD的位置关系是垂直,数量关系是BD=2CE证明如下:因为△ABD≌△ACF所以∠ABE=∠ACF,BD=CF因为∠BAC是直角所以∠CAF+∠F=90所以∠ABE+∠F=90所以∠BEF=
解题思路:利用三角形相似解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
解题思路:根据三角形三边所成的比例分析可求。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inc
角abd=角cbe,角bad=角bce,得三角形ABD∽三角形CBE.故角ABD=角CBE,BA/BD=BC/BE.则角ABC=角DBC,得三角形abc相似三角形dbe.
可知三角形ABC比A’B'C'比A1B1C1为3:2=4:5∴三分之二*四分之五=6分之5因此三角形ABC与三角形A1B1C1的相似比为6:5
解题思路:通过两次三角形相似进行证明解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include