已知三角形ABD相似三角形次A次B次C,AD,BE是三角形ABD的高

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:49:57
已知三角形ABD相似三角形次A次B次C,AD,BE是三角形ABD的高
已知 三角形ABC相似于三角形A1B1C1,三角形A1B1C1全等于三角形A2B2C2.求证 三角形ABC相似于A2B2

这道题是这样的.因为三角形A1B1C1和三角形A2B2C2全等.全等三角形满足:角:A1=A2,B1=B2,C1=C2.边:A1C1=A2C2,A1B1=A2B2,B1C1=B2C2.我们只用关于角的

已知三角形ABC相似与三角形A1B1C1,相似比为K,且三角形ABC的三边长分别是a,b,c(a》b》c),三角形

1.∵a/a1=k,c=a1∴a/c=k∴a=kc2.c=a/kc1=c/k=a/k²a/k和a/k²都是正整数例如:a=27,k=3∴c=a1=a/k=9,c1=a/k²

已知如图三角形是等边三角形点D ,E分别在BC,AC上,角ADE=60度求证三角形ABD相似三角形DCE

因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE

已知,三角形ABC是等边三角形,点D,E分别在边BC,AC上,角ADE=60度.求证:三角形ABD相似与三角形DCE

因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE

如图,已知三角形ABC相似于三角形ADE,连接BD,CE.1.是说明三角形ABD相似于三角形

证明:(1)∵△ABC∽△ADE∴AB/AC=AD/AE,∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即:∠BAD=∠CAE∴△ABD∽△ACE(两组对应边的比相等,且相应的夹角相等)(

相似三角形

解题思路:利用分母有理化解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea

三角形相似

解题思路:相似三角形的性质与判定,也利用了三角形的面积公式求线段的长.解题过程:见附件最终答案:略

如图三角形ADE与三角形ABC有公共顶点A,∠1=∠2,∠ABC=∠ADE,则△ABD与ACE相似吗

如图,△ADE和△ABC有公共的顶点A,∠1=∠2,∠ABC=∠ADE.则△ABD∽△又因为∠1=∠2所以△ABD∽△ACE(两边对应成比例且夹角相等的三角形相似

已知 如图,在四边形abcd中,ad平行bc,角bad=90度,bd垂直dc 求证:① 三角形ABD与三角形DCB相似

1、∵AD∥BC∴∠ADB=∠DBC∵∠bad=90度,bd垂直dc∴∠bad=∠BDC∴三角形ABD与三角形DCB相似2、由1得⊿ABD∽⊿DCB∴AD/BD=BD/BC∴bd平方=ad*bc

已知三角形ABC,AB=AC,点D,E分别在CB,AC的延长线上,角ADE=60度,求证:三角形ABD与三角形DCE相似

本题缺少条件!理由:AB=AC,则∠ABC=∠ACB;故∠ABD=∠DCE.(等角的补角相等)若⊿ABD∽⊿DCE,则应该有:∠ADB=∠DEC.可知:∠ADB+∠CDE=∠DEC+∠CDE=60度=

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

相似图形 三角形!一、如图,已知△ABD相似于△CDO若,AB:CD=1:2求BD分之BO的值.

因为△ABD相似于△CDO且AB:CD=1:2所以BO:OD=1:2所以BO:BD=BO:(BO+OD)=1:3

已知如图,把直角三角形ABD绕直角顶点A逆时针旋转90至三角形ACF的位置,三角形ABD全等于三角形ACF,BD的延长线

/>CE与BD的位置关系是垂直,数量关系是BD=2CE证明如下:因为△ABD≌△ACF所以∠ABE=∠ACF,BD=CF因为∠BAC是直角所以∠CAF+∠F=90所以∠ABE+∠F=90所以∠BEF=

相似(三角形相似)

解题思路:利用三角形相似解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea

相似(三角形的相似。)

解题思路:根据三角形三边所成的比例分析可求。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inc

已知角abd=角cbe,角bad=角bce,求三角形abc相似三角形dbe

角abd=角cbe,角bad=角bce,得三角形ABD∽三角形CBE.故角ABD=角CBE,BA/BD=BC/BE.则角ABC=角DBC,得三角形abc相似三角形dbe.

已知三角形ABC相似于三角形A’B'C'相似比为3:2,三角形A’B'C'相似于三角形A1B1C1,相似比为4:5,则三

可知三角形ABC比A’B'C'比A1B1C1为3:2=4:5∴三分之二*四分之五=6分之5因此三角形ABC与三角形A1B1C1的相似比为6:5

相似(相似三角形)

解题思路:通过两次三角形相似进行证明解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include