已知三角形abc相似与三角形def,三角形的周长为3,三角形def的周长为1,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:05:29
已知三角形abc相似与三角形def,三角形的周长为3,三角形def的周长为1,则
已知 三角形ABC相似于三角形A1B1C1,三角形A1B1C1全等于三角形A2B2C2.求证 三角形ABC相似于A2B2

这道题是这样的.因为三角形A1B1C1和三角形A2B2C2全等.全等三角形满足:角:A1=A2,B1=B2,C1=C2.边:A1C1=A2C2,A1B1=A2B2,B1C1=B2C2.我们只用关于角的

已知三角形ABC相似与三角形A1B1C1,相似比为K,且三角形ABC的三边长分别是a,b,c(a》b》c),三角形

1.∵a/a1=k,c=a1∴a/c=k∴a=kc2.c=a/kc1=c/k=a/k²a/k和a/k²都是正整数例如:a=27,k=3∴c=a1=a/k=9,c1=a/k²

已知,三角形ABC是等边三角形,点D,E分别在边BC,AC上,角ADE=60度.求证:三角形ABD相似与三角形DCE

因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE

三角形ABC与三角形AED相似,证明:三角形ADC与三角形AEB相似

1、∵△ABC∽△AED∴∠BAC=∠EAD∵∠BAC=∠BAE∠EAD=∠CAD∴∠BAE=∠CAD2、∵△ABC∽△AED∴AB:AE=AC:AD∴AD:AE=AC:AB3、∵∠BAE=∠CADA

如图,三角形ABC,三角形DEF均为正三角形,D,E分别在AB,BC上,请找出一个与三角形DBE相似的三角形并证明.

角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH

已知BD、CE分别是三角形ABC的两条高,垂足分别是D、E,连接D、E求证三角形ADE相似三角形ABC

BD、CE分别是三角形ABC的两条高,所以三角形ABD∽三角形AEC→AE/AD=AC/AB,AE/AC=AD/AB,又∠DAE=∠CAB→三角形ADE相似三角形ABC

已知三角形ABC,AB=AC,点D,E分别在CB,AC的延长线上,角ADE=60度,求证:三角形ABD与三角形DCE相似

本题缺少条件!理由:AB=AC,则∠ABC=∠ACB;故∠ABD=∠DCE.(等角的补角相等)若⊿ABD∽⊿DCE,则应该有:∠ADB=∠DEC.可知:∠ADB+∠CDE=∠DEC+∠CDE=60度=

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

已知三角形abc相似于三角形a1b1c1,三角形abc相似于三角形a2b2c2,则三角形abc与三角形a2b2c2有怎样

位置关系?什么叫做位置关系?、由你提出的条件只能证明abc与a2b2c2相似或者全等

如图,已知三角形ABC和三角形DEF均为正三角形,D、E分别在AB和BC上,请找出一个与三角形DBE相似的三角形并证明

△BDE∽△AGD证明∵△ABC和△FDE都是等边三角形∴∠B=∠A=60°,∠FDE=60°∴∠BDE+∠BED=∠ADG+∠BDE=120°∴∠BED=∠ADG∴△BDE∽△AGD

如图,已知三角形ABC,用尺规作一个三角形,使作出的三角形与三角形ABC相似并且相似,

已知ΔABC,求作:ΔADE,使ΔADE∽ΔABC,且AD:AB=2:1. 作法:1、延长AB,在射线AB上截取BD=AB,2、延长AC,在射线AC上截取CE=AC,3、连接DE,则ΔADE

已知AD=a cm ,AC=b cm,2BC=3 AC ,角B=36` 角D=170` ,三角形ABC相似与三角形DAC

因为三角形ABC相似于DAC所以AC/DC=BC/AC将AC=b和BC=1.5b代入得DC=2/3b同理AB/DA=BC/AC得AB=3/2a又因为两三角形相似其对应角的角度相等所以角DAC=角ABC

如图,在三角形ABC与三角形DEF中,∠A=∠D,AB/DE=AC/DF,求证:三角形ABC相似于三角形DEF

两边对应成比例,夹角相等,已经相似了.再问:按其他证明方法证明再答:还有一种方法就是把△DEF搬到△ABC上进行证明了,∵∠A=∠D,把△DEF搬到△ABC上,使A与∠D重合,且DE放在AB上,自然D

三角形ADE与三角形ABC的形状相同,称“相似三角形”.已知AB:AD=AC:AE=2:1求三角形ABC与三角形ADE的

AB:AC=AC:AE,∠A=∠A∴△ABC∽△ADE面积比为相似比的平方,因此是4:1

(1/3)相似三角形之类的数学题.(一)已知三角形ABC与三角形DFE相似且面积比为4:25,则三角形ABC与三...

BC与EF之比为2:5如果正方体A与正方体B相似比是3:2,那么它们棱边长之比是3:2;表面积的面积之比是3:2的平方也就是9:4;体积之比是3:2的立方也就是27:8.

已知BD,CE为三角形ABC的高,求证:三角形ADE相似于三角形ABC

证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中

已知Rt三角形ABC与Rt三角形DEF不相似,其中角C、F为直角.

尊敬的Lilian_A_Liu您好:下面是我的做法请您借鉴一下:1:△ABC中,∠C=90,则作直线CP交AB于P,使∠ACP=∠D2:△DEF中,∠F=90,则作直线FQ交AB于Q,使∠DFQ=∠A

已知三角形ADE相似三角形ABC,点E在AC上,点D,F在AB上,已知三角形ADE相似三角形ABC,

因为ADE相似ABC,所以AD比AB等于AE比AC(相似比)又因为AEF相似ADC,所以AE比AC等于AD比AF,则AD比AB等于AD比AF.化简得,AD方等于AF乘AB再问:??

如图,连接三角形ABC各边中点D,E,F,试证明三角形DEF与三角形ABC相似

证明:因为D、E、F分别是AB、BC、CA的中点∴DE,EF,DF都是△ABC的中位线∴DE/AC=EF/AB=DF/BC=1/2∴△DEF∽△ABC(三边对应成比例的两个三角形相似)再问:请详细些,