已知三角形ABC内一点O满足关系式2向量OA 向量OB 3向量OC=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:37:58
已知三角形ABC内一点O满足关系式2向量OA 向量OB 3向量OC=0
已知点O为三角形ABC内一点,且OA+OB+OC=0,求证O为三角形重心.

证明:作图,过B作BE平行OC且BE等于OC,OE连接交BC于FOB+OC=OB+BE=OE因BE平行且等于OC所BOCE为平行四边行所F为OE中点OF=1/2OE因OA+OB+OC=0所OB+OC=

已知点O为三角形ABC内一点,满足OA+2OB+3OC=0,求S△AOC:S△AOB:S△BOC

向量题,S△AOC:S△AOB:S△BOC=2:3:1延长OB至B',使OB'=2OB;延长OC至C',使OC'=3OC;连结B'C',取B'C'中点D,连结OD并延长至A',使DA'=OD;连结B'

已知O是三角形所在平面内的一点,且满足向量摸OB-OC=OB+OC-2OA,则三角形ABC的形状是

是不是这样的?|OB-OC|=|OB+OC-2OA|如果是的话,那么首先合并一下得到:|CB|=|AB+AC|即|AB-AC|=|AB+AC|(AB-AC)*(AB-AC)=(AB+AC)*(AB+A

若O是三角形ABC内一点,满足向量OA+向量OB+向量OC=向量0,求证:O是三角形ABC的重心

设AB中点为D,则向量OA+向量OB=2向量OD=-向量OC则COD共线,即CD是AB的中线,同理可得其他两条中线,而重心是三角形三边中线的交点,那么O是三角形ABC的重心

已知点o是△ABC的外心,E为三角形内一点,满足OE=OA+OB+OC,求证AE垂直于BC

∵O是△ABC的外心,∴线段OA=OB=OC,以OB和OC为邻接边作菱形OBFC,连接OF,则OF⊥BC,且向量OF=向量OB+向量OC;∵已知向量OE=向量OA+向量OB+向量OC,∴向量OE=向量

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

已知O为三角形ABC所在平面内一点,且满足(向量OB-向量OC)点积(向量OB-向量OA)=0,

向量CB点积向量AB=0说明两向量互相垂直三角形ABC为直角三角形.

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

已知O为三角形ABC所在平面内一点,

在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和

已知O是三角形ABC所在平面内一点,D为BC边中点

A.延长AD,到E使OD=DE.那么向量OB+OC=OE=AD=2AO.要说明的话,因为2OA=-(OB+OC),并OB+OC过点D.所以A,O,D共线.

已知O是三角形ABC所在平面内一点,且满足 向量OA+sinA(向量OB-向量OA)/(sinA+sinB)+sinB(

记k=sinA/(sinA+sinB)则向量AO=k向量AB+(1-k)向量AC=k(向量AC+向量CB)+(1-k)向量AC=k向量CB+向量AC所以向量CO=向量AO-向量AC=k向量CB而0

已知o为三角形abc所在平面内一点,且满足|oa|方+|bc|方=|ob|方+|ca|方=|oc|方+|ab|方,求证:

证明:假设O是三角形ABC的垂心成立,并设三边AB,AC,BC上的垂足分别是F,E,D,则有OA^2=AE^2+OE^2BC^2=BE^2+EC^2则有OA^2+BC^2=AE^2+OE^2+BE^2

已知三角形ABC的垂心为H,平面内一点O满足,向量OH=向量OA+向量OB+向量OC,求证:点O为三角形ABC的外心

用同一法若点O为三角形ABC的外心,则向量OH=向量OA+向量OB+向量OC如果存在一点Q,使向量QH=向量QA+向量QB+向量QC,那么在AB、BC、CA方向上Q、O位置均相同

已知O是三角形ABC内一点,求证.

(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,

已知三角形ABC中,O是三角形ABC内一点,向量OA+OB+OC=0,判断o是三角形ABC的重心还是外心,说明理由

设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(

已知点O为三角形ABC内一点,满足2OA(向量)+3OB(向量)+5OC(向量)=0,记三角形ABC的面积为S,三角形B

以C为原点,CB方向为x轴的正向建立坐标系,将A放在第一象限,则C(0,0),设A(m,n),B(b,0),O(x,y),(m,n,b均为正数),从而OA向量=(m-x,n-y),OB向量=(b-x,