已知△abc外接圆o半径为2,且向量ab 向量ac=2ao

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:20:32
已知△abc外接圆o半径为2,且向量ab 向量ac=2ao
如图,已知:⊙O为△ABC的外接圆,OE是⊙O的半径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE

证明:连接BE,因为CE为直径,所以∠EBC=90°,又因为CD⊥AB,所以∠ADC=90°,又因为∠CAD=EBC(都对应弧BC),所以∠ACD=∠BCE.满意的话请及时点下采纳哟.:

已知圆O为三角形ABC的外接圆,边长为6,求圆O的半径

题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3

如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为(  )

连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,∴AD=OA•cos30°=3,∴AB=23.故选C.

已知正三角形ABC的外接圆半径为R,内切圆半径

作出正三角形ABC的圆心O,连接OA,过点O做OM⊥AB,交点为M,则OA=R,MO=内切圆半径r正三角形∠OAM=30ºsinOAM=MO/OA=r/R=sin30º=1/2∴内

已知、△ABC是等边三角形,边长为6cm,求证、外接圆的半径和内切圆的半径

作AD⊥BC,交BC于D,交外接圆于E,作BF⊥AC,交AC于F,交AD于O△ACE为直角三角形,∠CAE=30°AE=AC/cos30°=4√3cm外接圆的半径=AE/2=2√3cmAD=AC*co

已知等边三角形ABC的边长为2根号3CM求他的外接圆半径

等边三角形外接圆半径就是被一角对着的的角平分线截断的,这个角的平分线(从角顶点到对着的平分线的部分)边长2*根号3一半边长根号3与这半边长垂直的那个角平分线,所对的角所引的平分线被截断的部分(半径),

设△ABC的外接圆半径为R,证明正弦定理=2R

步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/s

如图,已知⊙O是△ABC的外接圆,⊙O半径为8,sinB=3/4,则弦AC的长为?

延长AO交圆O于D,连结CD,则三角形ACD为直角三角形,根据同弧所对的圆周角相等可得∠D=∠B在直角三角形ACD中SinD=SinB=3/4=AC/AD而AD=2R=16所以可求AC=12

已知圆O是边长为2的等边三角形ABC的外接圆,求圆O的半径

 再问:最后看不清再答: 再答:这样呢再问:看清了

已知圆O是边长为2的等边三角形ABC的外接圆.求圆O的半径!

由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3

如图所示,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1.

如图,①连接BO,则∠AOB=2∠ACB=2*45°=90°,所以三角形AOB是直角三角形,则有AB=AO*√2=1*√2=√2,在△ABC中,AC/sin∠ABC=AB/sin∠ACB,AC=√2*

已知三角形ABC,外接圆半径为R,内切圆半径为r,求两圆圆心距离.

这是:三角形欧拉公式d²=R²-2rR的推导,如下图所示:\x0d\x0d设ΔABC的三个顶角分别为A、B、C,内切圆圆心为O,外接圆圆心为P;\x0d推导分三步,\x0d第一步:

(2009•威海)已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为(  )

过A作AD⊥BC于D,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=4设⊙O的半径为x,Rt△OBD中,OB=x,OD=4-x根据勾股定理,得:OB2

已知外接圆半径为6的△ABC的三边a,b,c,S=a^2-(b-c)^2

S=a^2-(b-c)^2=a^2-b^2-c^2+2bc据余弦定理:S=-2bccosA+2bc又:S=0.5bcsinA4(1-cosA)=sinA8sin^A/2=2sinA/2cosA/2si

已知,如图,圆形O是等边三角形ABC的外接圆,且其内切圆的半径为2厘米,求△ABC的边长及扇形AOB的面积

等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=

已知△ABC外接圆半径是2cm,∠A=60°,则BC边长为 ___ .

∵△ABC外接圆半径是2cm,∠A=60°,∴由正弦定理得:asinA=2R,即a=2RsinA=4×32=23,则BC=a=23cm,故答案为:23cm

已知R为三角形ABC外接圆半径,求证面积S=abc/4R

c/sinC=2R所以sinC=c/(2R)而S=1/2absinC=abc/4R

圆O是△ABC的外接圆,∠BAC的平分线交圆O于点D,弦DC=2根号3,圆心O到弦BC的距离为1,则圆O的半径为?

连结OD交BC于点H,延长DO交圆O于点E,连结CE.因为AD是角BAC的平分线,所以弧BD=弧CD,因为DE是圆O的直径,所以DE垂直于BC于H,(垂径定理)角DCE=90度(直径所对的圆周角是直角