已知△ABC和三角形ade都是等腰直角三角形如图摆放使得以直角边重合连接
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:09:04
在△ACD和△ABE中AC=AB∠CAD=∠BAEAD=AE∴△ACD≌△ABE(SAS)∴EB=DC
连接BE,因为△ABC与△ADE是等边三角形,所以AB=ACAD=AE角EAB=60-角BAD=角CAD△ABE≌△ACD角ACD=角ABE=60度CD=BE因为CD=BF所以△BEF是全等三角形,则
证明:∵∠ABC=90,M为EC的中点∴BM=EM=EC/2(直角三角形中线特性)∴∠MBE=∠MEB∴∠BME=180-2∠BEM∵∠ADE=90,AD=ED∴∠AED=45,∠EDC=90∴DM=
我们不妨取特殊情况看一下,让d点为ac的中点,三角形ade在ac的外侧,作出图形,则四边形abce为正方形,设边长为n,则bd=√2a,dm=a/2bm=√5a/2.似乎看不出三角形bmd有什么特殊的
图呢再问:����
解题思路:(1)据等腰直角三角形的性质,及“直角三角形斜边上的中线等于斜边的一半”可解答此题。(2)先证明△MDE≌△MFC,得出AD=ED=FC,再作AN⊥EC于点N,证出△DBF是等腰直角三角形,
(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=1/2EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.同理可证:DM=1/2EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA
证明:,△ABC和△ADE都是等边三角形所以角CAB=角BAE=60度,AC=AB,AD=AE所以三角形CAD全等于三角形BAE(边角边)所以EB=DC
证明:三角形ABC和三角形ADE是等边三角形,则AD=AE,AB=AC,角CAD=角BAE,则三角形CAD全等于三角形BAE,所以,EB=DC
(1)证明:如图,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠EDC=90°,BA=BC,∴∠BCA=45°,∵点M为EC的中点,∴BM=12EC=MC,DM=12EC=M
(1)△BMD是等腰三角形,理由是:∵∠ABC=∠ADE=90°,∴∠EDC=90°,∵点M是CE的中点,∴BM=12CE,DM=12CE,∴BM=DM,∴△BMD是等腰三角形;(2)BD=2BM,证
∵△ABC和△ADE是等腰三角形∴BA=ACDA=AE∵∠DAE=∠BAC∠DAB=∠DAE-∠BAE∠EAC=∠BAC-∠BAE∴∠DAB=∠EAC∴△ADB≌△AEC(边角边)
利用全等三角形来做(SAS)边:角形ABC和三角形ADE都是等腰三角形(这里有2边)角:顶角角BAC=角DAE(加上旁边的公共角)命题得证.
扯呢,怎么能全等.因为AD和AC分别为两个轴对称三角形的对称轴所以AD与BC垂直,AC与DE垂直所以角ADE+角EDC=90EDC+ACD=90所以ACE=ADE=35
我来,等下再答: 再答:采纳?
连接BE,因为△ABC与△ADE是等边三角形,所以AB=ACAD=AE角EAB=60-角BAD=角CAD△ABE≌△ACD角ACD=角ABE=60度CD=BE因为CD=BF所以△BEF是全等三角形,则