已知⊙O的半径为1,弦AB=根号2,求∠AOB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:48:17
证明:连接CA,CB∵OC⊥AB∴CA=CB∵AD=BE,∠CAD=∠CBE(同弧所对的圆周角相等)∴△ACD≌△BCE∴CD=CE,∠ACD=∠BCE∵AB是直径∴∠ACB=90°∵∠BCE+∠AC
如图,过点O作OE⊥AB,OF⊥AC,垂足分别为E,F,∵AB=2,AC=3,∴由垂径定理得,AE=22,AF=32,∵OA=1,∴由勾股定理得OE=22,OF=12,∴∠BAO=45°,∴OF=12
如图,作OM⊥AB与M,∵AB=8,∴BM=12AB=12×8=4,∵PB=3,∴PM=1,P′M=7,在直角△OBM中,OM=OB2−BM2=3;在Rt△OPM中,OP=OM2+PM2=10.在Rt
三角形AOB是等腰三角形(OA=OB=1)又因为OA^2+OB^2=AB^2(1+1=2)所以角AOB=90°
(1)连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,∵OC⊥AB,OC过圆心O,∴AC=BC=12AB=8cm,在Rt△OCB中,由勾股定理得:OC=OB2−BC2=122−
过O作OC⊥AB,可得C为AB的中点,∵AB=36cm,∴AC=12AB=18cm,在Rt△AOC中,OA=30cm,AC=18cm,则cos∠OAB=ACOA=1830=35.故选A
勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的
弦AB交圆与点A和点B,点A和点B到圆心的距离为OA和OB,从圆心O出发画线OC垂直AB,交AB与点D,OC就是圆心到AB的距离.由于OC垂直AB,且OA=OB=10cm,所以三角形OAB是等腰三角形
连接OA,OC,做OM⊥AB垂足为M,交CD于N,∵AB‖CD,∴ON⊥CD,∴AM=1/2AB=3,MN=1,在Rt⊿AOM中,OA=5,AM=3,∴有勾股定理得OM=4,∴ON=OM-MN=4-1
设OC交AB于D∵C为弧AB的中点∴OD⊥ABOD=1设半径OB=OC=x则在Rt△BOD与Rt△CDB中BD²=BC²-CD²BD²=BO²-OD&
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3
作OD⊥AB于点D根据垂径定理AD=BD=1/2AB=18∵OA=30根据勾股定理可得OD=24即O到AB的距离为24cos∠OAB=AD/OA=18/30=3/5
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..
根据垂径定理,得半弦长是4cm.再根据勾股定理,得其半径是5cm.故选C.
分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=12AC=32,AD=12AB=22,∴sin∠AOE=AEAO=321=32,sin∠AOD=ADOA=
连结弧两端与圆心,构成一三角形,弧=90度,圆心角=90度,三角形为直角三角形因半径相等,可根据勾股定理算得2*R2=AB2AB=2
设⊙O的半径为R,连接OA、OB∵OA=OB=R,N是AB的中点∴AN=AB/2=2√3/2=√3,ON⊥AB(垂径分弦)∴OA²-ON²=AN²∵MN=1∴ON=OM-