已知⊙O的半径为1,弦AB=根号2,求∠AOB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:48:17
已知⊙O的半径为1,弦AB=根号2,求∠AOB
)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD

证明:连接CA,CB∵OC⊥AB∴CA=CB∵AD=BE,∠CAD=∠CBE(同弧所对的圆周角相等)∴△ACD≌△BCE∴CD=CE,∠ACD=∠BCE∵AB是直径∴∠ACB=90°∵∠BCE+∠AC

已知:⊙O半径OA=1,弦AB、AC长分别为2

如图,过点O作OE⊥AB,OF⊥AC,垂足分别为E,F,∵AB=2,AC=3,∴由垂径定理得,AE=22,AF=32,∵OA=1,∴由勾股定理得OE=22,OF=12,∴∠BAO=45°,∴OF=12

已知⊙O的半径为5,AB为弦,P是直线AB上一点,PB=3,AB=8,则OP为(  )

如图,作OM⊥AB与M,∵AB=8,∴BM=12AB=12×8=4,∵PB=3,∴PM=1,P′M=7,在直角△OBM中,OM=OB2−BM2=3;在Rt△OPM中,OP=OM2+PM2=10.在Rt

已知圆O的半径为1CM,弦AB=根号2CM,求角AOB的度数.

三角形AOB是等腰三角形(OA=OB=1)又因为OA^2+OB^2=AB^2(1+1=2)所以角AOB=90°

已知⊙O的半径为12cm,弦AB=16cm.

(1)连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,∵OC⊥AB,OC过圆心O,∴AC=BC=12AB=8cm,在Rt△OCB中,由勾股定理得:OC=OB2−BC2=122−

如图所示,已知⊙O的半径为30cm,弦AB=36cm,则cos∠OAB等于(  )

过O作OC⊥AB,可得C为AB的中点,∵AB=36cm,∴AC=12AB=18cm,在Rt△AOC中,OA=30cm,AC=18cm,则cos∠OAB=ACOA=1830=35.故选A

如图,已知圆O的半径为r,弦AB垂直平分半径OC,则弦AB长为

勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的

已知⊙O的半径为10cm.弦 AB=12cm.则圆心到AB的距离为.

弦AB交圆与点A和点B,点A和点B到圆心的距离为OA和OB,从圆心O出发画线OC垂直AB,交AB与点D,OC就是圆心到AB的距离.由于OC垂直AB,且OA=OB=10cm,所以三角形OAB是等腰三角形

如图,AB,CD是⊙o的两条弦,且AB平行CD,已知AB与CD之间的距离为1CM,⊙o的半径为5CM,AB=6CM,求C

连接OA,OC,做OM⊥AB垂足为M,交CD于N,∵AB‖CD,∴ON⊥CD,∴AM=1/2AB=3,MN=1,在Rt⊿AOM中,OA=5,AM=3,∴有勾股定理得OM=4,∴ON=OM-MN=4-1

数学垂径定理题.急,已知ab为圆o的弦,点c为弧ab的中点,点o到ab的距离为1,bc=二倍根号三求圆o半径o到ab的距

设OC交AB于D∵C为弧AB的中点∴OD⊥ABOD=1设半径OB=OC=x则在Rt△BOD与Rt△CDB中BD²=BC²-CD²BD²=BO²-OD&

j已知AB是半径为1的圆O的一条弦,且AB=a小于1,以AB为一边在圆O内作正三角行ABC,D为圆O上不同于点A的一点,

答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的

已知圆O的半径为4,弦AB的长等于半径,则圆心O到AB的距离

运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3

如题,已知⊙O的半径为30mm,弦AB=36mm,求点O到AB的距离及∠OAB的余弦值.

作OD⊥AB于点D根据垂径定理AD=BD=1/2AB=18∵OA=30根据勾股定理可得OD=24即O到AB的距离为24cos∠OAB=AD/OA=18/30=3/5

1.已知AB是半径为1的圆O的一条弦,且AB=a

第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..

已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,则⊙O的半径是(  )

根据垂径定理,得半弦长是4cm.再根据勾股定理,得其半径是5cm.故选C.

已知⊙O的半径OA=1,弦AB、AC的长分别是2

分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=12AC=32,AD=12AB=22,∴sin∠AOE=AEAO=321=32,sin∠AOD=ADOA=

已知圆O的半径为根号2,弧AB=90度,求弦AB的长

连结弧两端与圆心,构成一三角形,弧=90度,圆心角=90度,三角形为直角三角形因半径相等,可根据勾股定理算得2*R2=AB2AB=2

已知在⊙O中,N为弦AB中点,ON交弧AB于M,若AB=2根号3,MN=1,求⊙O的半径

设⊙O的半径为R,连接OA、OB∵OA=OB=R,N是AB的中点∴AN=AB/2=2√3/2=√3,ON⊥AB(垂径分弦)∴OA²-ON²=AN²∵MN=1∴ON=OM-