已知y=ln(根号下x2 a2 x),则dy=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:06:24
y(-x)=ln(-x+√(1+x^2))=ln[1/(x+√(1+x^2))]=-ln(x+√(1+x^2))=-y(x)所以是奇函数再问:麻烦你能不能在详细点啊谢谢!
f(x)=ln(x+根号下1+x2)f(-x)=ln(-x+根号下1+x2)因为(x+根号下1+x2)*(-x+根号下1+x2)=1所以f(-x)=ln(x+根号下1+x2)^(-1)=-ln(x+根
解题思路:利用指数与对数的关系式以及反函数的概念来解答.解题过程:
再答:���Ϻ����
首先根据题意求出定义域,在定义域的范围内求解值域.
=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]
y=ln(x+√(x²+a²))y′=(1+x/√(x²+a²))/(x+√(x²+a²))=1/√(x²+a²)y″=
y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x
1)这两个函数对所有实数有定义;2)ln[-x+根号下(x^2+1)]=ln[1/(x+根号下(x^2+1))]=-ln[x+根号下(x^2+1)]
y'=1/[x+√(x2+a2)]×[x+√(x2+a2)]'=1/[x+√(x2+a2)]×【1+x/√(x2+a2)】=1/[x+√(x2+a2)]×【[x+√(x2+a2)]/√(x2+a2)】
1,y=ln(1-x)y'=1/(1-x)*(1-x)'=1/(1-x)*(-1)=1/(x-1);2,y=ln[1/√(1-x)]=-ln√(1-x)y'=-1/√(1-x)*[√(1-x)]'=-
y'=arctanx加x/(1加x^2)-x/(1加x^2)=arctanx再问:有详细步骤吗?
z=ln√(x-√y)因为x-√y>0,所以x>√y≥0又y≥0,即x²>y≥0定义域x²>y≥0就是在第一象限画出从平面原点O出发向右上方的一条y=x²的抛物线,定义域
y=In√x=In(x)^1/2=1/2*Inxx=e^(2y).反函数为y=e^(2x)没理解错吧?
复合求导,先把ln后面的式子看成整体f(x),写成它的倒数,再乘以整体f(X)的导数
y=ln根号下1-x/1+x=0.5ln(1-x)-0.5ln(1+x)y'=0.5/(1-x)-0.5/(1+x)=0.5(1+x-1+x)/(1-x)(1+x)=x/(1-x²)y''=
y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)
y-x^2>01-y-x>=0所以x^2