已知xy-e^x e^y=0,求dy x=0=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:54:51
你这个直接求积分吧用分步积分即可y=∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C(c为常数)
这个是非齐次的一阶线性微分方程首先求它对应的齐次线性方程的y'-2xy=0,dy/dx=2xy,dy/y=2xdx,∫dy/y=∫2xdx,lny+C1=x²+C2,y=Ce^(x²
将原方程两边微分得d[xe^y+sin(xy)]=0→e^ydx+xe^ydy+cos(xy)(ydx+xdy)=0→移项[xe^y+xcos(xy)]dy=-[e^y+ycos(xy)]dx整理→d
y'e^y+e^x-y²-2xyy'=0y'=(e^x-y²)/(2xy-e^y)即:dy/dx=(e^x-y²)/(2xy-e^y)祝你开心!希望能帮到你,如果不懂,请
根据n阶导数的莱布尼茨得f^n(x)=C(n,0)xe^x+C(n,1)e^xf^n(0)=n
xy-e^y=0y+xdy/dx-e^y·dy/dx=0dy/dx=y/(e^y-x)d²y/dx²=[dy/dx·(e^y-x)-y(e^y·dy/dx-1)]/(e^y-x)&
两边同时微分.e^ydy-ydx-xdy=0.变下形.答案就出来了
e^ydx+(xe^y+2y)dy=d(xe^y)+d(y^2)=0------全微分积分可得xe^y+y^2=0
1.先解齐线性方程xy'+(1-x)y=0的通解,得到y=ce^(x-lnx),(c为任意常数)……①其次利用常数变易法求非齐线性方程xy'+(1-x)y=e^2x的通解,把c看成是c(x),微分①后
y=(x-1)e^x+C
应用隐函数求导,两边对X求导即可:e^y+xe^yy'+y+xy'+y'=0y'=-(y+e^y)/(xe^y+x+1)x=0时,代入原方程得:y=1因此有:y'(0)=-(1+e^1)/(0+0+1
两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0
对xy-e^x+e^y=0求微分得ydx+xdy-e^xdx+e^ydy=0(y-e^x)dx+(x+e^y)dy=0dy/dx=(x+e^y)/(e^x-y)
y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得
xy'+y=-xe^x(xy)'=-xe^x两边积分:xy=-∫xe^xdx=-xe^x+∫e^xdx=-xe^x+e^x+C令x=1:0=-e+e+C,C=0所以xy=-xe^x+e^x显然x≠0所
x=0,e^y=e,y=1xy+e^y=ey+xdy/dx+e^ydy/dx=0dy/dx=-y/(x+e^y)dx/dy|x=0=-1/e
2yy'-xy'e^y=e^y2yy'=(xy'+1)e^y(y^2)'=(xe^y)'y^2=xe^y+C
y'=(xe^y)'=x'e^y+x(e^y)'=e^y+xe^yy'y‘=e^y/(1-e^y)∴dy/dx=e^y/(1-e^y)x=0好象没有一个确定的值