已知x1,x2是方程ax^2 bx c=0(a不等于0)的两个根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:32:21
显然a≠0由△=16a2-16a(a+4)≥0得a<0,由韦达定理知x1+x2=1,x1x2=a+44a,所以(x1−2x2)(x2−2x1)=5x1x2−2(x21+x22)=9x1x2−2(x1+
X1,X2是方程X^2-2aX+a+b=0两实数根x1+x2=2ax1*x2=a+b且△=(-2a)^2-4(a+b)≥0a^2≥a+b=x1*x2(X1-1)^2+(X2-1)^2=(x1^2-2x
学过韦达定理的话,就很简单了.由韦达定理得x1+x2=-b/ax1x2=c/a(x1-x2)²=(x1+x2)²-4x1x2=(-b/a)²-4(c/a)=b²
△=b^2-4acx1=(-b+√△)/2a,x2=(-b-√△)/2ax1+x2=(-b+√△)/2a+(-b-√△)/2a=-2b/2a=-b/ax1x2=(-b+√△)/2a*(-b-√△)/2
设f(x)=ax^2+bx+c利用图像1.a>0,f(1)>0,f(-1)>0,判别式>0a+b+c>0借助图像理f(1)=a+b+c,当a(开口)不断增大时图像右边交点不断靠近1,f(1)就不断减小
就是0ap+bq+cr=x1^2008*(a*x1^2+b*x1+c)+x2^2008*(a*x2^2+b*x2+c)x1和x2是两个根,所以括号里的计算结果是0,和也是0.
第一题充要性:因为方程x^2+ax+b=0有两个实根x1x2,而且|x1|再问:"所以有2|a|
因为x1x2=c/a,x1+x2=-b/a(其中,a=1,b=-a,c=a^2-a+(1/4)),则,x1x2/(x1+x2)=a-1+(1/4a)∵Δ=a²-4(a²-a+1/4
因为x1,x2是关于x方程x^2-ax+a^2-a+(1/4)=0的两个实根,所以(1)△≥0,即a^2-4a^2+4a-1≥0,从而1≥a≥1/3(2)(x1x2)/(x1+x2)=a+1/4a-1
∵X1,X2,是方程ax²+bx+c=0的两个实根∴ax1²+bx1+c=0.(1)ax2²+bx2+c=0.(2)由(1)*b,a*b=0,得:b²x1+bc
/>ax^2+bx+c=0的两个根为x1,x2则x1+x2=-b/ax1x2=c/ax1^2+x1x2+x2^2=1x1^2+2x1x2+x2^2-x1x2=1(x1+x2)^2-x1x2=1b^2/
ax^2+bx+c=0有两实根x1、x2,且|x1|4ac由于4a^2>b^2>4ac,所以a>cb^2>4ac>2bc,所以b>2c,所以c最小不妨设c=1,则a+1>b,所以a>=bb^2>4a>
X1/X2=3/4,即x1=3x2/4∴x1+x2=7x2/4=-ax1x2=3x2²/4=b△=a²-4b=49x2²/16-3x2²=x2²/16
首先方程有根Δ=4a²-4(a+b)≥0即a+b≤a²X1+X2=2ax1x2=a+b(x1-1)²+(x2-1)²=x1²+x2²-2(x
点A和点B关于抛物线的对称轴对称对称轴是x=(x1+x2)/2x1+x2、0,与对称轴等距所以x=x1+x2时,二次函数的值是c原题中c=5吧?
∵方程x2-ax+2a=0的两个实数根分别是x1、x2,∴x1+x2=a,x1•x2=2a,∴(x1-x2)2-x1x2=(x1+x2)2-5x1x2=a2-10a=(a-5)2-25,∵△=a2-8
这道题算是比较典型的吧第一题af(-1)再问:f(-2)f(0)
在以上方程中,x^2的系数是1>0,所以图像抛物线的开口向上,并且方程有两个解,所以当x=0时,有最小值f(-1)大于等于0,f(0)<0,f(1)大于等于0,懂了没?应该是这样的,嗯,画图应该就好理
x1,x2是方程x^2-ax-6a=0的解韦达定理:x1+x2=a,x1*x2=-6a德尔塔=a^2+24a>=0,得a>=0或a