已知O是三角形ABC的两条角平分线BO,CO
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:05:24
点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量
建系A(-1,0)C(1,0)B(0,√3)由已知求得,0(x,√3/3)所以,三角形ABC和三角形OAC的面积比为3
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C
将△ABC分成三个三角形:△AOB,△AOC,△BOC.设O到三角形三边的距离都是h三角形的面积=三个三角形的面积=AB*h*1/2+AC*h*1/2+CB*h*1/2=三角形周长*h*1/2=54*
证:∵BD⊥ACCE⊥AB∴∠ADB=∠AEC=90°∵∠BAD=∠CAE∴△ACE∽△ABD∵AD:AB=AE:AC∵∠BAE=∠DAE∴△ADE∽△ABC
证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
∠BOC=180°-∠OBC-∠OCB=180°-∠ABC/2-∠ACB/2=180°-(∠ABC+∠ACB)/2=180°-(180°-∠A)/2=90°+∠A/2如仍有疑惑,欢迎追问.祝:
相当于证明(BC+CA+AB)
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
百度百科“三角形的四心”,有详尽的相关证明
18*3/2=27有这个面积公式,三角形面积等于三角形周长乘以内切圆半径的积的一半
OA+OB=OD(作出平行四边形)则OD交AB于E,则E为AB中点,又OA+OB=-OC,则-OC=OD,故O,C,D,E四点共线,即CE为中线,同理证其它情况得O中线交点,则为重心
(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,
设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(