已知n阶矩阵A=1000000,求|A|所有元素代数余子式的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:20:12
你需要再看一下教科书,这里的证明就是按照一个矩阵为正定的定义来证的.首先证明A'A对称,其次证明对任意的非零向量XX'(A'A)A>0
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A
相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii
肯定是设x为A的属于特征值i的特征向量,那么Ax=ix从而AAx=Aix也就是A^2x=i(Ax)=i^2x从而i^2x=0,也就是i^2=0从而i=0由于i是A的任意一个特征值,所以A的全部特征值全
设B=(a1,a2,a3,……),因为AB=O,所以Aa1=0,Aa2=0,……因为A列满秩,所以方程Aan=0仅有零解,即an=O,所以B=O用类似的方法可以证明第二个
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
(A-E)(A-E)T=AAT-AT-A+E=EAAT=A+ATATA=A+AT.(1)由题目要证明的可知A可逆(1)两边取逆矩阵A^(-1)(AT)(-1)=A^(-1)+[A^(-1)]T..(2
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
每一行元素的和是1,所以A(1,1,...,1)'=n(1,1,...,1)',特征向量就是k(1,1,...,1)'.
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
|A|=m,|2|A|A^t|=|2mA^t|,因A为n阶,则|2mA^t|=(2m)^n|A^t|,又|A^t|=|A|=m,|2mA^t|=(2m)^n|A^t|=(2m)^(n+1)/2再问:貌
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).
detA=1ordetA=1A*A=EorA*A=-EA*=A^TorA*=-A^TA*^T=AorA*^T=-A,A*^TA*=A*A*^T=E所以:A*是正交矩阵.再问:看不懂。。它中间那个or要
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A
1.证明:(1)因为AB=0,所以B的列向量都是AX=0的解[看到AB=0就要联想到这个结论]而由已知r(A)=n,所以AX=0只有零解所以B的列向量都是零向量,故B-0.(2)由AB=A,所以A(B
(A-2E)(A+E)=A^2-A-2E而A^2=A,所以(A-2E)(A+E)=-2E即(A-2E)(-A/2-E/2)=E这样就可以由逆矩阵的定义知道,A-2E的逆矩阵为-A/2-E/2即(A-2