已知f(x 2)=5x 1,求f(3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:14:09
已知f(x 2)=5x 1,求f(3)
已知正实数X1,X2 及函数f(X)满足4的x次=1+f(X)/1-f(X).且f(X1)+f(X2)=1 求f(x1+

根据第一个条件可以求得f(x)=(4^x-1)/(4^x+1)(4^x表示4的x次方)代入第二个条件,f(x1)+f(x2)=1,整理出来一个包含(4^x1+4^x2)和4^(x1+x2)的一个等式.

已知x1,x2为R+,4^X=(1+f(x)\=(1-f(x))且f(x1)+f(x2)=1求f(X1+x2)的min

^x=[1+f(x)]/[1-f(x)]---->f(x)=[1-4^x]/[1+4^x]设a=4^(x1),b=4^(x2),显然a>0,b>0.f(x1)+f(x2)=(1-a)/(1+a)+(1

已知函数f(x)=2的X次方,X1,X2是任意实数且X1不等于X2,证明0.5(f(x1)+f(x2))>f((x1+x

(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.

已知函数f(x)=lgx(x属于R+)若x1,x2属于R+,比较1/2[f(x1)+f(x2)f[(x1+x2)/2]的

(f(x1)+f(x2))/2=(lgx1+lgx2)/2=log(x1*x2)^0.5f[(x1+x2)/2]=lg((x1+x2)/2)=lg(x1+x2)-lg2x1>0x2>0x1+x2>=2

已知f(x1+x2)=f(x1)+f(x2)+1在R上成立,求f(x)是奇偶函数或f(x)+1是奇偶函数

当x2=0时f(x1)=f(x1)+f(0)+1f(0)=-1当x1=-x2时f(0)=f(-x2)+f(x2)+1-f(-x2)-1=f(x2)+1所以f(x)+1是奇函数

已知二次函数f(x)=ax2+bx+c ,对x1,x2属于R且x1〈x2,f(x1)不等于f(x2),方程f(x)=[f

令g(x)=f(x)-[f(x1)+f(x2)]/2g(x1)=f(x1)-[f(x1)+f(x2)]/2=[f(x1)-f(x2)]/2同理g(x2)=-[f(x1)-f(x2)]/2g(x1)*g

高二数学最值已知f(x)=(logx-1)/(logx+1),f(x1)+f(2*x2)=1(x1、x2均大于10),求

先对f(x)求导自己算不麻烦!由于x>0所以f'(x)恒为正即f(x)在定义域上是增函数所以要求f(x1*x2)最小值就是x1*x2的最小值f(x1)+f(2*x2)=1用f(x)的解析式代入,左边通

已知定义在(0,+∞)上的函数f(x1/x2)=f(x1)-f(x2),仅当x>1时,f(x)<0,(1)求

1)令y=-x则f(x)+f(-x)=f(0)令x=y=0则f(0)+f(0)=f(0)所以f(0)=0即f(x)+f(-x)=0所以f(x)是奇函数2)设x1>x2则x1-x2>0则f(

已知函数f(x)=lgx,求证f(x1)+f(x2)/2≤f(x1+x2/2)

因为:f(x)=lgx,x1,x2∈R+所以,[f(x1)+f(x2)]/2=(lgx1+lgx2)/2=lg(√x1x2)f[(x1+x2)/2]=lg[(x1+x2)/2]由匀值定理得:x1+x2

已知函数f(x)=ax的平方+bx(ab≠0)若f(x1)=f(x2)且x1≠x2求f(x1+x2) 提示先求x1+x2

f(x)是二次函数,它的对称轴是x=-b/2af(x1)=f(x2)所以x1,x2关于x=-b/2a对称所以x1+x2=2*(-b/2a)=-b/af(x1+x2)=ab^2/a^2-b^2/a=0

已知函数f(x)=2^x,x1,x2是任意实数,且x1≠x2.证明1/2[f(x1)+f(x2)]>f[(x1+x2)/

不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证

f(x1+x2)=f(x1)f(x2),f’(0)=2,求f(x)和f’(x)

由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧

已知函数y=f(x).对于任意两个实数x1,x2,有f(x1+x2)=f(x1)f(x2)且f(0)不等于0,

f(x1+x2)=f(x1)f(x2)f(0)=f(0+0)=f(0)f(0)=[f(0)]²又f(0)≠0,则f(0)=1f(-2008)f(-2007)f(-2006)..f(2006)

已知正实数x1,x2及函数f[x]满足4^x=1+f[x]/1-f[x],且f[x1]+f[x2]=1.求f[x1+x2

解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^

求极值的已知正实数X1,X2,及函数f(x)满足 4^x = (1+f(x)) / (1-f(x)) ,且 f(x1)

由4^x=(1+f(x))/(1-f(x))可得f(x)=[4^x-1]/[4^x+1],再由f(x1)+f(x2)=1,带入化简得:4^(x1+x2)-3=4^x1+4^x2,此时利用基本不等式a^

已知函数y=f(x)对于定义域内的任意实数x1,x2(x1≠x2)都有f(x1)-f(x2)/(x1-x2)>0,

[f(x1)-f(x2)]/[(x1-x2)]>0,(1)x1f(x2),所以,是递增的;所以,选Aps:事实上这个式子是单调递增的等价定义,相应的还有[f(x1)-f(x2)]/[(x1-x2)]