已知f(1 2x-1)=2x 3,且f(m-1)=6,则实数m=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:06:17
(1)f′(x)=3(x+1)(x-1),当x∈[-3,-1)或x∈(1,32]时,f′(x)>0,∴[-3,-1],[1,32]为函数f(x)的单调增区间,当x∈(-1,1)为函数f(x)的单调减区
若|f(a)|=|1−a3|<2成立,则-6<1-a<6,解得-5<a<7,即当-5<a<7时,p是真命题; 若A≠∅,则方程x2+(a+2)
1.对函数求一阶导:令y=f(x)'=3x(x-a),得到极值点x=0或x=a2.由于a>1;则f(x)在x=0取最大值1,在-1或1处取最小值-2,(题上区间应该是【-1,1】吧?3.由2则f(0)
f(x)=x²-x-5g(x)=1/3x³-5/2x²+4xg'(x)=x²-5x+4y=g'(x)/[f(x)+9]=(x²-5x+4)/(x
已知函数f(x)=x3次方+ax平方+x+2,若a=-1f(x)=x^3-x^2+x+2g(x)=2x-f(x)=-x^3+x^2+x-2g'(x)=-3x^2+2X+1=0x=-1/3,x=1[-1
f'(x)=3x^+3f'(2)=3*2^+3=15
1、f′(x)=3x²+2ax+b;f′(1)=3+2a+b=0(1)f′(-2/3)=4/3-4a/3+b=0;(2)(1)-(2)得:10a/3+5/3=0;a=-1/2;带入(1)得:
f(x)=x^3+(1-a)x^2-a(a+2)x+b^表示次方1)函数f(x)的图象过原点,那么f(0)=0所以0=0+bb=0f'(x)=3x^2+2(1-a)x-a(a+2)f'(0)=-a(a
(1)f′(x)=3x2-a,3x2-a≥0在R上恒成立,∴a≤0.又a=0时,f(x)=x3-1在R上单调递增,∴a≤0.(2)假设存在a满足条件,由题意知,f′(x)=3x2-a≤0在(-1,1)
三次函数,与x轴三个交点,题目只给了两个,你要分情况讨论咯.一眼看上去有三种情况,楼主你要写很久啊.k2是K的2次方吗?
f'(x)=3x^2f'(1)=3由点斜式得切线方程:y=3(x-1)+2=3x-1
(Ⅰ)当a=0时,f(x)=x3-3x,故f'(x)=3x2-3…(1分)因为当x<-1或x>1时,f'(x)>0当-1<x<1时,f'(x)<0故f(x)在(-∞,-1]和[1,+∞)上单调递增,在
(1)对f(x)求导得:f(x)'=3X^2-8X+4令f(x)>0得:x>2或x
(1)f′(x)=3x2-2ax-3,∵x=-13是f(x)的极值点,∴f′(−13)=0,即3×(−13)2−2a×(−13)−3=0,解得a=4.经验证a=4满足题意.∴f(x)=x3-4x2-3
∵f(x)=x3-12x2-2x+5,∴f′(x)=3x2-x-2,由f′(x)=3x2-x-2>0,解得x>1,或x<−23所以原函数的单调增区间为(-∞,−23),(1,+∞).故答案为(-∞,−
f'(x)=3x^2+2bx+c说明原函数图象先增后减再增画出大致图象可知:f(-2)0f(0)
如果是x的立方--3Xf(x)导数=3乘X的平方---3你要的答案就是:9记得采纳啊
f(x)={x²+2x,x≥0-x²+2x,x3x²+2x>3且x≥0,解得x>1-x²+2x>3且x
(1)f′(x)=3x2+2bx+c(1分)由已知得:f′(1)=3+2b+c=0f(1)=3+b+c=−1(2分)解得:b=1c=−5(1分)(2)设g(x)=f(x)+t=x3+x2-5x+2+t
解题思路:函数性质一定要好好使用。围绕单调性、奇偶性、周期性以及特殊点做文章。解题过程:答案见附件,有问题请在讨论区交流。最终答案:略