已知A为n阶矩阵,且对于某个正整数m有A^m=零矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:41:20
已知A为n阶矩阵,且对于某个正整数m有A^m=零矩阵
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

已知n(n>=2)阶方阵A的伴随矩阵A*为奇异矩阵,且A*的各行元素之和为3,则其次方程AX=0的基础解系为.

由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1

证明:因为A为正交矩阵,所以AA^T=E.所以|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|(E-A)^T|=|E-A|=|-(A-E)|=(-1)^(2n+1)|A-E

设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵

首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA

已知A、B为n阶矩阵,且A为对称阵,证明BTAB也是对称阵

2.1-俩人都没中的概率=1-0.2*0.1=0.981.A-B显然的不一定,只要取A=B就看出来了AB非奇异,因为|AB|=|A||B|0

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

已知矩阵n*n矩阵B=A*A',A为n*r矩阵,求解A矩阵,matlab如何实现

小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交

A,B为n阶实对称矩阵,且对于任意n维向量X,都有XTAX=XTBX,证明A=B

A,B为n阶实对称矩阵,若对于任意n维向量X,都有XTAX=XTBX,则特别的,对于单位坐标向量组e1,e2,...,en也有eiTAei=eiTBei,(i=1,2,...,n)所以(e1,e2,.

A为n阶矩阵,对于任意n*1矩阵a都有aT*A*a=0证明A为反对称矩阵

设A的元素为:a(i,j),i,j=1,2,...n取:aT=(0,0...1.,0,...0)(第i个为1,其余为0)则由aT*A*a=0,可得出:a(i,i)=0i=1,2,...n.再取:aT=

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

设A,B为n阶矩阵,且A为对称矩阵,证明:BTAB也是对称矩阵.

由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵

设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则(  )

(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决

已知A为n阶矩阵,且A^2=A; 求(A-2E)^-1

(A-2E)(A+E)=A^2-A-2E而A^2=A,所以(A-2E)(A+E)=-2E即(A-2E)(-A/2-E/2)=E这样就可以由逆矩阵的定义知道,A-2E的逆矩阵为-A/2-E/2即(A-2

已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.

只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A