已知AB是⊙的直径,CB是⊙O的弦,D是弧AB的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:26:49
已知AB是⊙的直径,CB是⊙O的弦,D是弧AB的中点
直线与圆:如图,已知CD是△ABC的边AB上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证

证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=

已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.

(1)∵AB是⊙O的弦,半径OD⊥AB,CB⊥AB,∴AM=BM,OD∥BC∴AD=DC.(2)连接O、B两点∵⊙O的切线交BC于E,∴OD⊥DE,又∵OD⊥AB,∴AB∥DE,∵OD∥BC,OD⊥D

(2013•雨花台区一模)如图,已知,AC是⊙O的直径,B是圆上一点,连接AB、OB、CB,若∠A=30°,AB=3cm

如图,∵AC是直径,∴∠ABC=90°.∴在Rt△ABC中,∠A=30°,AB=3cm,则AC=ABcos30°=23cm,∴OA=OB=12AC=3cm.又∠COB=2∠A=60°,∴∠AOB=12

如图已知△ABC内接于⊙O,AC是⊙O的直径,D是弧AB的中点,过点D做直线BC的垂线,分别交CB CA的延长线于E,F

1.连接OD因为三角形ABC是直角三角形(不知道你学过没.连接OB,OB等于OC等于OA等于1/2AC所以是直角三角形.直角三角形斜边中线等于斜边一半的逆定律)所以AB平行于EF因为D为弧AB中点所以

已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长

∵ab为直径∴∠ACB=90°又∵∠ADC=90°=∠ACB∠CAD=∠BAC∴⊿ABC∽⊿ACD∴AC/AB=AD/AC∴AC²=AB×AD=52∴CB²=AB²-AC

已知如图,A是⊙O的直径CB延长线上一点,BC=2AB,割线AF交⊙O于E、F,D是OB的中点,且DE⊥AF,连接BE、

(1)BE与DF不平行(1分)理由:过O作OM⊥EF,垂足为M,则EM=MF∵DE⊥AE,∴DE∥OM∴AE:AM=AD:AO=3:4     &nb

已知:如图,⊙O1与⊙O2经过点O1,CO1是⊙O的直径,求证:CA,CB是是⊙O1的切线

再答:同学,你好,不懂可以追问我,如果满意,还望采纳!谢谢!

如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O

证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=12AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OE

已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD ,CF⊥AB于点F,CE⊥AD的延长线于点E(1)试

∵CE=CF,∠CAE=∠CAB∴△CAE≌△CAF∵AB是⊙O的直径∴∠ACB=90°∵∠DAB=60°∴∠CAB=30°,AB=6∴BC=3∵CF⊥AB于点F∴∠FCB=30°

如图,AB是⊙O直径,CB是⊙O的切线,切点为B,OC平行于弦AD.

证明:连接OD;∵OA=OD,∴∠A=∠ADO.∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD.∴∠BOC=∠COD.∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC,又BC是

如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD问:证明CD是圆

连BF易证∠ABF=∠ADF(都是弧AF所对的圆周角)又DF是直径∠ADG=∠ABD∴∠FDG=∠ADF+∠ADG=∠ABF+∠ABD=∠FBD=90°∴DG是⊙O的切线即CD是⊙O的切线

如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是AB的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F.

(1)证明:连接OD交于AB于点G.∵D是AB的中点,OD为半径,∴AG=BG.(2分)∵AO=OC,∴OG是△ABC的中位线.∴OG∥BC,即OD∥CE.(2分)又∵CE⊥EF,∴OD⊥EF,∴EF

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

已知:如图,AB是⊙O的直径,弦AD∥OC.求证:CD=CB.

证明:连接AC、OD.∵AD∥OC(已知),∴∠DAB=∠COB(两直线平行,同位角相等);又∵∠CAB=12∠COB(同弧所对的圆周角是所对的圆心角的一半),∴12∠DAB=∠CAB(等量代换),∵

如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CB∥PO. (1)判断PC与⊙O的位置关

角PAC等于角ABC(弦切角定理)因为CB平行于PO所以角ABC=角AOP所以角PAC=角AOP角ODA=180-角AOP-角DAO=180-角PAC-角DAO=90度再用全等三角形就可以证明三角形P

如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,D是⊙O上一点,CD=CB,连AD,OC,OC交⊙O于E,交BD于P

(1)证明:连接OD,在△OCD和△OCB中,CD=CBOC=OCOD=OB,∴△OCD≌△OBC(SSS),∴∠ODC=∠OBC,∵BC是⊙O的切线,∴OB⊥BC,即∠OBC=90°,∴∠ODC=9

AB是⊙O的直径 点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,

已知如图AB是⊙O的直径点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F已知如图AB是⊙O的直径点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.1.试说明DE=

已知AB是圆O的直径 AD切圆O于A 弧EC=弧CB 则下列结论不一定正确的是

:如图所示:因为AD切圆o于点A,而AB是圆的直径        所以AB⊥AD   &n

如图AB是⊙O的直径,点C,D都在⊙O上,连结CA,CB,DC,DB.已知∠D=30°,BC=3,求AB的长

同弧所对的圆周角相等,∠D=∠A=30°直径所对的圆周角是直角,∠ACB=90°直角三角形中,30°所对的直角边是斜边的一半AB=2BC=6