已知AB是⊙的直径,CB是⊙O的弦,D是弧AB的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:26:49
证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=
(1)∵AB是⊙O的弦,半径OD⊥AB,CB⊥AB,∴AM=BM,OD∥BC∴AD=DC.(2)连接O、B两点∵⊙O的切线交BC于E,∴OD⊥DE,又∵OD⊥AB,∴AB∥DE,∵OD∥BC,OD⊥D
如图,∵AC是直径,∴∠ABC=90°.∴在Rt△ABC中,∠A=30°,AB=3cm,则AC=ABcos30°=23cm,∴OA=OB=12AC=3cm.又∠COB=2∠A=60°,∴∠AOB=12
用勾股定理啊,连结OC,OC方等于OE方加CE方,OC=ROE=R-2CE=4
1.连接OD因为三角形ABC是直角三角形(不知道你学过没.连接OB,OB等于OC等于OA等于1/2AC所以是直角三角形.直角三角形斜边中线等于斜边一半的逆定律)所以AB平行于EF因为D为弧AB中点所以
∵ab为直径∴∠ACB=90°又∵∠ADC=90°=∠ACB∠CAD=∠BAC∴⊿ABC∽⊿ACD∴AC/AB=AD/AC∴AC²=AB×AD=52∴CB²=AB²-AC
(1)BE与DF不平行(1分)理由:过O作OM⊥EF,垂足为M,则EM=MF∵DE⊥AE,∴DE∥OM∴AE:AM=AD:AO=3:4 &nb
再答:同学,你好,不懂可以追问我,如果满意,还望采纳!谢谢!
证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=12AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OE
∵CE=CF,∠CAE=∠CAB∴△CAE≌△CAF∵AB是⊙O的直径∴∠ACB=90°∵∠DAB=60°∴∠CAB=30°,AB=6∴BC=3∵CF⊥AB于点F∴∠FCB=30°
证明:连接OD;∵OA=OD,∴∠A=∠ADO.∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD.∴∠BOC=∠COD.∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC,又BC是
连BF易证∠ABF=∠ADF(都是弧AF所对的圆周角)又DF是直径∠ADG=∠ABD∴∠FDG=∠ADF+∠ADG=∠ABF+∠ABD=∠FBD=90°∴DG是⊙O的切线即CD是⊙O的切线
(1)证明:连接OD交于AB于点G.∵D是AB的中点,OD为半径,∴AG=BG.(2分)∵AO=OC,∴OG是△ABC的中位线.∴OG∥BC,即OD∥CE.(2分)又∵CE⊥EF,∴OD⊥EF,∴EF
图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的
证明:连接AC、OD.∵AD∥OC(已知),∴∠DAB=∠COB(两直线平行,同位角相等);又∵∠CAB=12∠COB(同弧所对的圆周角是所对的圆心角的一半),∴12∠DAB=∠CAB(等量代换),∵
角PAC等于角ABC(弦切角定理)因为CB平行于PO所以角ABC=角AOP所以角PAC=角AOP角ODA=180-角AOP-角DAO=180-角PAC-角DAO=90度再用全等三角形就可以证明三角形P
(1)证明:连接OD,在△OCD和△OCB中,CD=CBOC=OCOD=OB,∴△OCD≌△OBC(SSS),∴∠ODC=∠OBC,∵BC是⊙O的切线,∴OB⊥BC,即∠OBC=90°,∴∠ODC=9
已知如图AB是⊙O的直径点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F已知如图AB是⊙O的直径点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.1.试说明DE=
:如图所示:因为AD切圆o于点A,而AB是圆的直径 所以AB⊥AD &n
同弧所对的圆周角相等,∠D=∠A=30°直径所对的圆周角是直角,∠ACB=90°直角三角形中,30°所对的直角边是斜边的一半AB=2BC=6