已知AB可逆BA可逆吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:09:13
因为A可逆,所以有A^-1(AB)A=BA所以ABBA(相似)
有AB-A-B=0(A-I)B-A=0(A-I)B-(A-I)=I即(A-I)(B-I)=I所以A-I,可逆.故(A-I)(B-I)=(B-I)(A-I)=I即有AB-A-B+I=BA-B-A+I整理
对的.且有(AB)^-1=B^-1A^-1(A^2)^-1=(A^-1)^2
C=(E+AB)^(-1)(E-BCA)(E+BA)=E-BCA+BA-BCABA==E+B[-C+E-CAB]A=E+B[E-C(E+AB)]A=E==>E+BA可逆,且(E+BA)^(-1)=E-
可以用矩阵运算如图凑出E-BA的逆矩阵.经济数学团队帮你解答,请及时采纳.再问:有没有简便的方法啊?再答:如果要求出逆矩阵,只能这样做。若只是证可逆,还可用公式|E-BA|=|E-AB|,行列式非零,
反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾
A,B可逆吗?如果B可逆,我能证明BCB^(-1)是I-BA的逆阵反例:A=(10)(10)B=(0.50.5)(00)则可证明I-AB可逆,而I-BA不可逆
由B只有有限个特征值,存在B的特征值λ,使得λ-1不是B的特征值.设X是B的属于特征值λ的特征向量,即有X≠0并满足BX=λX.由AB-BA=A,有BA=AB-A.于是BAX=ABX-AX=A(λX)
因为A,B为n阶方阵,当E+AB可逆,故(E+AB)^-1存在.因此(E+BA)(E-B[(E+AB)^-1]A)=E+BA-(E+BA)B[(E+AB)^-1]A=E+BA-(BE+BAB)[(E+
这个问题有很多证法,反证法可以说是不太好的选择,因为你不易看到背后隐藏的东西.当然,如果一定要反证法,那么也容易如果E-BA不可逆,那么存在非零向量x使得(E-BA)x=0,左乘A=>(E-AB)(A
知识点:R(AB)
只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E
我们发现这题的条件比较少,所以考虑用反证法假设E-BA不可逆,就是|E-BA|=0这样一来,(E-BA)x=0就有非零解.所以我们设α是一个非零解,然后把它(或者另外一个非零解)带入(E-AB)x=0
记号:[A,B;C,D]表示2X2分块矩阵,第一行块为A,B,第2行块为C,D.考虑[E-AB,0;B,E],将其第二行块左乘A加到第一行块得[E,A;B,E],再将第一行块左乘-B加到第2行块得到[
AB都是n阶方阵的时候当然对啦,由"AB可逆"可推出"|AB|不等于0"进而有"|BA|=|B|*|A|=|A|*|B|=|AB|不等于0",因此"BA可逆"..不是的话就不对了A为m*n,B为n*p
因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能
看到几个证明,感觉思路不清晰.还是按定理直接证好些.证明:因为(I+BA)[I-B(I+AB)^-1A]=(I+BA)-(I+BA)B(I+AB)^-1A=I+BA-B(I+AB)^-1A-BAB(I
[En+B(Em-AB)^(-1)A]·(En-BA)=En-BA+B(Em-AB)^(-1)A-B(Em-AB)^(-1)ABA=En-BA+B(Em-AB)^(-1)·Em·A-B(Em-AB)^
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A