已知ABCD为一正方形,点C在直线BM上,完成正方形ABCD的两面投影
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:36:56
1、图中,有△ABP≌△PGF(AB=PG=2,BP=FG=3,∠ABP=∠PGF=90°)∴将△PGF向左平移5个单位,G和B重合,再将△PGF绕G(B)顺时针旋转90°,那么△ABP和△PGF重合
正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证 点F与点B重合所以 DP = BP所以 DP&
连接AC,将AC三等分,标上三等分点E、F,则根据匀强电场中沿电场线方向相等距离,电势差相等可知,E点的电势为3V,F点的电势为9V.连接BE,则BE为一条等势线,根据几何知识可知,DF∥BE,则DF
已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的中心,则四棱锥P-ABCD为正四棱锥
答案:(-2,0)连接CF交x轴于点P,根据位似图形定义可知P即是位似中心坐标,根据C点与F点坐标就可以求出辅助线直线方程为y=1/3*x+2/3与x轴交点为-2,求得答案可见名师讲解
据题意得A(0、0)B(0、4)C(-4、4)D(-4、0)(1)设反比列函数解析式为:y=k/x则:k/-4=4k=-16反比列函数解析式为:y=-16/x(2)在运动过程中只存在△DCQ≌△PAD
如图,设E到A点,B点,C点的距离之和的最小值为2+6.以B为旋转中心,把△AEB按逆时针方向旋转60°,得△FGB,连CF,∴△BEG是正三角形,∴BE=GE,∴AE+EB+CE=FG+GE+EC≥
如图,过O作OE⊥AD,交AD于点E,交BC于点F,连接OC,OD,则E、F分别为AD、BC的中点,设正方形边长为2x,故ED=x,又OD=2,∴由勾股定理得OE=4−x2,∴OF=|OE-EF|=|
(3,4)再问:有过程吗?亲再答:画图。。。再问: 再答: 再答:不好意思,之前写反了。
解题思路:本题主要考查相似三角形的判定和性质,掌握相似三角形的对应边成比例是解题的关键,注意分类思想的应用.解题过程:
PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题
未提供数据,下面是查到的题目,DE=2,EC=1因DE=2,EC=1,可知正方形边长为3若点F在线段BC上,则△ADE≌△ABF,BF=DE=2,所以FC=EC=1.若点F在CB延长线上,则同理△AD
当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2
D在第二象限,所以只能是AB为正方形一条边,从D点做垂线DE,从B点做垂线BF垂直于X轴,则三角形ADE和三角形BAF全等,可以直接算出来D坐标是(-2,4),于是又由于AB与CD是平行且相等的,可以
(1)重叠部分的面积为1/4a²(2)探究若将正方形OMNP绕点O旋转任意一个角度,此时BE与CF相等,四边形OECF的面积为1/4a²证明:∵四边形ABCD是正方形∴OB⊥OC,
又是你,不过你这次把题目改好了!先求出AB的方程:y=x-4假设G点坐标为(-t,0)则CG斜率为4/t,所以GE斜率为-t/4GE直线方程为:y=-t/4(x+t)算出与AB交点为:(-t+4,-t
(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2
因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1