已知a>0,函数f(x)=-2acos(2x π 2) 2a b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:05:03
已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>
f(x)=(x+1/2)+(a-1/4)>=a-1/4,由于f(m)
数形结合用复合函数解
分类讨论:a>0时:1-a1所以f(1-a)=2-a>>>将x=1-a带入f(x)=2x+a,x>>将x=1+a带入f(x)=-x-2a,x≥1中,下面的分类类似相等得到a=-3/2,与a>0的矛盾,
f(x)=x平方+x+a=x(x+1)+a∵f(m)<0∴f(m)=m(m+1)+a<0即m(m+1)<-a又∵a>0,且m<m+1∴m<0,m+1>0∵(m+1)平方≥0∴f(m+1)=(m+1)平
1)因为lg函数是单调递增的,而且(x^2+2x+a)/x在x=1/2时取得最小值即f(x)=2+√22)有意义就是(x^2+2x+a)/x>0当a>=o时成立.当a-2.因为x>=1.所以a>-3所
这是双钩函数,有个基本公式即f(x)=x²+a/x1、函数是奇函数证明:首先函数定义域为(-∞,0)∪(0,+∞),关于原点对称f(-x)=-x-a/x=-(x²+a/x)=-f(
当x∈(0,2]时,2x单调递增;a/x由于a
g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,
(1)对f(x)、g(x)分别求导得:f(x)'=1+2/x²;g(x)'=-a/x;根据斜率相等带入x=1得1+2=-a即a=-3;所以g(x)=-3*(2-lnx)=3lnx-6x=1时
先把等式化成顶点式,f(x)=(x+1/2)^2-1/4+a,当x=-1/2时取到最小值,我们将x=-1/2加1,因为最低点要是加1之后大于0,那么其它点也会成立,f(1)=1+1+a>0(a>0),
f(m+1)>0将m带入f(x)=x^2-x+af(m)=m^2-m+a<0又∵a>0∴m^2-m<0→m^2<m若m>0,得出0<m<1若m<0,得出m>1(不符,舍去)→0<m<1将m+1带入方程
函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a
(1)∵f(x)=(2a+1)/a-1/a²x=(-1/a²)/x+(2a+1)/a且a>0∴1/a²>0∴-1/a²<0(这题类似反比例函数y=k/x,k≠0
这个,是两个函数吧(1)f(x)=(2-a)x+1,x
(1)当a=-3时,f(x)≥3即|x-3|+|x-2|≥3,即①x≤23−x+2−x≥3,或②2<x<33−x+x−2≥3,或③x≥3x−3+x−2≥3.解①可得x≤1,解②可得x∈∅,解③可得x≥
1)x>=a时,f(x)=x^2+x-a+1=(x+1/2)^2-a+3/4,因为对称轴x=-1/2,a>0,所以在x>=a时单调增,最小为f(a)=a^2+12)x=1/2则最小值为f(1/2)=a
f'(x)=3x^2-2(a+1)x+a-2那么f(x)=x^3-(a+1)x^2+(a-2)x+C∵f(0)=2a∴C=2a即f(x)=x^3-(a+1)x^2+(a-2)x+2a不等式f(x)
【1解】:f(x)=|x-1|-ln[x],x>0当00,为递增函数,f(x)>f(1);所以,f(x)的最小值为f(1)=0;【2解】:当a>1,由(1)可得:(0,a]递减;[a,无穷)递增;当0
/>f(x)=x²+2a,x0时,1-a1,(1-a)²+2a≥-(1+a)a²-2a+1+2a≥-1-aa²+a+2≥0上式恒成立,故a>0时满足题意.a1,