已知:如图1所示,抛物线y=-x平方-2x 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:43:42
已知:如图1所示,抛物线y=-x平方-2x 3
如图,已知抛物线y=(1/2)x^2+bx+c如图,已知抛物线y=1/2+bx+c与x轴交于A(-4,0)和B(1,0)

由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-

如图,已知抛物线y =a(x-1)2+3根号3(a不等于0

(1),∵点A在抛物线y=a(x-1)²-3√3上∴把点A(-2,0)代入,得0=a(-2-1)²-3√3解得,a=√3/3(2)由(1)可得,a=√3/3∴y=√3/3(x-1)

如图1,已知抛物线y=ax2+bx(a不=0)经过A(3,0

解题思路:见解答解题过程:解:(1)∵抛物线y=ax2+bx(a≠0)经过点A(3,0)、B(4,4),∴解得:∴抛物线的解析式是y=x2-3x;把x=2,y=n代入y=x2-3x得y=-2∴D(2,

二次函数y=a(x-h)^的图像如图26-10所示.已知a=0.5,OA=OC,试求该抛物线的解析式

我也不知道我猜的图对不对啊……∵OA=OCa=0.5∴y=?x^2-xh+?h^2h^2=h或-h(要是A点在Y轴右侧、就是正H、左侧则为负H)所以h=2或-2(同上、右侧为2左侧为-2)我也是猜的图

如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1

(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-

二次函数Y=a(x+m)^2的图像如图2-11所示,已知a=1/2,OA=OC,试求该抛物线的解析式

Y=a(x+m)^2整理得Y=1/2X^2+XM+1/2M^2,因为OA=OC,由图可知M

如图1,已知抛物线 y=ax^2 的顶点为P,A、B是抛物线上两点,AB‖x轴,△PAB是等边三角形.

(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0)与y轴的正半轴交于点C如下图所示

1),抛物线的对称轴:x=1,与x轴的另一个交点B的坐标为;(3,0).2),以AB为直径的⊙P的圆心为:(1,0),半径为:2,所以圆的方程为:(x-1)^2+y^2=4,故C点坐标为:(0,√3)

如图,已知抛物线y=ax2+bx+c经过O(0,0)

(1)经过O,A(4,0),可表达为y=ax(x-4)经过B(3,√3):-3a=√3a=-√3/3,b=4√3/3抛物线的函数解析式:y=-√3/3(x²-4x)(2)t秒时:P(t,0)

如图,已知抛物线y =a(x-1)2+3根号3

图呢,题呢?再问:唉。。。我准备问度娘了再答:建议你用http://www.jyeoo.com/可信,标准再问:谢谢啊

如图,在平面直角坐标系中,抛物线y=1/2x*2经过平移得到抛物线y=1/2x*2-2x,其对称轴与两段抛物线所围成的阴

4y=1/2x^2-2x与y=1/2x^2一减,得到|y|=|2x|,也就是说,在0≤x≤2的范围内,阴影部分与y轴平行的长度与该长度到y轴距离是正比关系,其实阴影部分的面积就是一个底为两函数在x=2

如图,平行于y轴的直线l被抛物线y=12x2+1、y=12x2-1所截.当直线l向右平移3个单位时,直线l被两条抛物线所

抛物线y=12x2+1是y=12x2-1向上平移2个单位长度得到的,即|y1-y2|=2.当直线l向右平移3个单位时,阴影部分的面积是,2×3=6.

如图已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式;

1.将点(1,-5)和(-2,4)带入抛物线y=x2+bx+c,则有-5=1+b+c和4=4-2b+c,求出b=-2,c=-4带入得出抛物线的解析式:y=x2-2x-42.设N点为(x1,y1),M点

如图,已知抛物线y=-x2+bx+c经过点A(-1,0)和C(0,4).

(1)y=-x^2+bx+c把点A和C坐标代入得0=-1-b+c和4=c由此得c=4b=3所以y=-x^2+3x+4(2)y=-x^2+3x+4和y=x+1消去y得x^2-2x-3=0x1=-1x2=

已知:如图,抛物线y=x²+bx+c的图像经过点A(-1,0)…

C(0,-3),y(0)=c=-3,y(-1)=1-3+b(-1)=0,b=-2y=x^2-2x-3=(x-1)^2-4,顶点(1,-4)D(m,m^2-2m-3),BC直线:x-y-3=0D到Bc的