已知:如图,在菱形ABCD中点E,F分别为边CD.AD的中点,连接AE.CF,证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:59:44
建立空间坐标系A-XYZ,AE为x轴,AD为y轴,AP是z轴
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
(1)∵四边形ABCD是菱形∴BC=AB=4∵E是BC的中点∴BE=2∴cos∠ABC=BE/AB=2/4=1/2∴∠ABC=60°(2)菱形ABCD的面积=底边×高=BC×AE∵∠ABC=60°∴A
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
连结AC,由E、F为中点可EF为中位线,则EF=1/2AC,同理GH=1/2AC,FG=1/2BD,EH=1/2BD;由矩形ABCD可知对角线相等,即AC=BD,从而得到EF=GH=FG=EH,所以四
因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)
MO是三角形的中位线MO=5则菱形的边长为10cm所以菱形的周长为40cm
1.证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥B
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
(1)取AD中点为G,连接BG,易知FD平行于BG,四边形BFDG是平行四边形,所以BF=DG.F和G都是边的中点,CF=FB=DG=GA,可知FD和BG把AC分为相等的3段,所以AM=2CM(2)因
证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=12AB,DE=12AB(直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
因为DE⊥AE,且AE=2,AE=EB所以:在直角△AED中,AE=2,AD=4,所以:∠ADE=30°所以:∠DAB=60°所以:∠ABC=120°由棱形的性质知:∠AOB=90°,∠OAB=∠OA
因为菱形ABCDE是AB中点所以△DAE≌△DEB△ADE≌△DEB所以DB=DA=AB所以等边三角形DAB所以∠DBA=60因为菱形ABCD所以△DAB≌△DBC所以∠DBC=∠DBA=60所以∠A
辅助:连接AC;在三角形ABC中,AE垂直于BC,E是BC的中点,而菱形的性质又决定AB=BC;所以三角形ABC是等边三角形,∠ABC=60度;菱形的面积=AE*菱形边长;AE^2=4^2-2^2=√
(1)证三角形AEM全等三角形DEF,得,AM=DF,因EM//BD,MB//DF,所以四边形FDBM是平行四边形,所以MB=DF,所以AM=MB,即M是AB中点(2)因AD=2DF=4,所以菱形AB
(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD的周长=6×4=24,故选C.