已知:如图,在△ABC中AD⊥BC,垂足为点D,AD²=BD×DC.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:00:27
设CD=X根据勾股定理列方程AB²-BD²=AC²-CD²17×17-﹙9+X﹚²=100-X²解得:X=6AD²=AC²
那条式子其实是射影定理要证明三角形ABC是直角三角形用相似就可以解决再问:用勾股定理呢?再答:CD=AD×BD可变形为CD:BD=AD:CD然后因为垂直所以∠CDB=∠ADC就可以证明三角形CDB∽三
是∵AD²﹢DC²=AC²BD²+DC²=BC²AC²+BC²=AD²+BD²+2DC²D
因为AD^2=BD*CD所以AD/BD=CD/AD所以△BDA∽△ADC所以∠BAD=∠ACD又因为∠ACD+∠DAC=90º所以∠BAD+∠DAC=90º所以角A为直角所以三角形
证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中∵∠FAE=∠CAEAE=AE∠AEF=∠AEC,∴△FAE≌△CAE(A
因为角EAD=角CAD,(AD平分角BAC)又:角EDA=角DAC,(DE//AC)所以,角EDA=角DAE又:EF垂直于AD所以,EF是AD的垂直平分线,∴FD=FA,(垂直平分线上的点到线段两个端
∵AD⊥BC∴∠BAD+∠B=90°∵∠1=∠B∴∠1+∠BAD=∠BAC=90°∴△ABC是直角三角形.
题有误,应是角ACB=90度因为角ACB=90度角A=60度所以角B=30度所以AC=1/2AB因为CD垂直AB于D所以角ADC=90度所以角ACD=30度所以AD=1/2AC所以AD:AB=1:4
证明:在△ABE和△ACE中,AB=ACAE=AEBE=CE∴△ABE≌△ACE∴∠BAE=∠CAE,∴AD是三角形的角平分线,∴AD⊥BC(等腰三角形三线合一性质).
由题意可得:△ABD≌△ABE,△ACD≌△ACF∴∠DAB=∠EAB,∠DAC=∠FAC又∵∠BAC=45°∴∠EAF=90°又∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°又∵AE
证明:延长CB取点E使BE=AB∵BE=AB∴∠E=∠EAB∵∠ABC=∠E+∠EAB∴∠ABC=2∠E∵∠ABC=2∠C∴∠C=∠E∴AE=AC∵AD⊥BC∴DE=CD(等腰三角形三线合一)∵DE=
证:∵AD平分∠BAC,∴∠BAD=∠DAC又∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF∵∠BAF=∠BAD+∠DAF,∠ACF=∠DAC+∠ADF∴∠BAF=∠ACF.这很简单啊.
证明:△ABC中,S△ABC=1/2*BC*AD=1/2*AB*CF∴AD*BC=AB*CF∴CF/AD=BC/AB∵PQ‖BC∴△APQ∽△ABC∴BC/AB=PQ/AP∴CF/AD=B=PQ/AP
由AD⊥BC,∠B=∠1=∠CAD,(1)∴△ABD中,∠B+∠BAD=90°,(2)将(1)代入(2)得:∠1+∠BAD=∠BAC=90°,∴△ABC是直角三角形.
∵AB=AC,AD平分∠BAC,∴BD=DC,AD⊥BC,即BC=2CD,∵AF=2CD,∴AF=BC,∵CE⊥AB,AD⊥BC,∴∠AEF=∠BEC=∠ADC=90°,∵∠AFE=∠DFC,∠AEF
∵BE⊥AD,CF⊥AD∴∠E=∠OFC∠BOE=∠COF又∵BE=CF∴△BOE≌△COF∴BO=OC∴AD是△ABC的中线
因为∠B=30°,∠C=50°所以∠BAC=180°-∠B-∠C=100°因为AD,AE分别是△ABC的高和角平分线所以∠DAC=180°-90°-∠C=40°∠EAC=∠BAC/2=100°/2=5
BD=CD∵BE⊥AD于E,CF⊥AD于F∴角BEF=角CFE在△BDE与△CDF中角BEF=角CFE角BDE=角CDFCF=BE∴△BDE≌△CDF∴BD=CD不会还可以再问我,希望采纳,O(∩_∩
证明:在DC上取DB′=DB,连接PB′,AB′交PC于E点,由轴对称可知,PB′=PB,AB′=AB,由三角形三边关系定理,得AB+PC=AB′+PC=AE+EB′+PE+EC>PB′+AC=PB+