已知:如图,△ABC内接于⊙O,D为弧BC的中点,AE⊥BC于E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:29:47
1.连接OD因为三角形ABC是直角三角形(不知道你学过没.连接OB,OB等于OC等于OA等于1/2AC所以是直角三角形.直角三角形斜边中线等于斜边一半的逆定律)所以AB平行于EF因为D为弧AB中点所以
证明:(1)∵AD平分∠BAC,∴∠1=∠2,(2分)∵BF切⊙O于点B,∴∠3=∠2,∴∠3=∠1,(4分)又∵∠2=∠4,∴∠3=∠4,即BD平分∠CBF;(6分)(2)在△DBF和△BAF中,∵
证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免
(1)证明:联结BO并延长交⊙O于G,联结GE,设∠BAF为∠1,∠CAF为∠2,∠CBE为∠3,∠FBE为∠4∵∠BAC的平分线为AF∴∠1=∠2∵弧CE=弧CE∴∠2=∠3∵弧CB=弧CB∴∠2+
延长AO交圆O于F,连接BF∵AF是直径∴∠ABF=90°∴∠BFA+∠BAF=90°∵AD⊥BC∴∠ACB+∠DAC=90°∵∠ACB=∠BFA∴∠BAF=∠DAC∵E为弧BC中点∴∠BAE=∠CA
(1)设AH垂直BC于点H,则AH是BC的垂直平分线,所以由OB=OC可知O在AH上又OH垂直BC,BC平行PA,所以OH垂直PA,A又是与圆的交点所以A一定是切点,PA是切线(2)利用△ABC就能求
证明:连结AO交圆与点D,连结DB,则因为
因为AE是⊙O的直径,所以∠ABE=90°,∠BAE=90°-∠BEA因为弦AD与弦BC垂直,所以∠CAD=90°-∠ACB因为∠BEA=∠ACB所以∠BAE=∠CAD
连接BD,(1)∵直径AD,∴∠ABD=90°,∵∠C=60°,∴∠BDA=60°,∴∠BAD=30°,(2)∵AD⊥BC,BC=16cm,∴BE=CE=8cm,∵∠BAD=30°,∴AB=2BE=1
BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB
关于如图,三角形ABC内接于圆O
(1)直线CD与⊙O相切.理由如下:如图,∵∠A=30°,∴∠COB=2∠A=60°.又∵OC=OB,∴△OBC是等边三角形,∴∠OCB=60°.又∵∠BCD=30°,∴∠OCD=∠OCB+∠BCD=
证明:连接OE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴BE=CE,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OA=OE,∴∠OEA=∠OAE,∴∠OAE=∠EAD.
(1)连接BG,根据同一弧所对应的圆周角相等,可推出∠BGA=∠ACB再看△AHE和△ACD,共用∠DAC,而且∠BEC和∠ADC都是直角则△AHE∽△ACD,推出∠AHE=∠ACB,根据之前∠BGA
连接AO并延长交圆于点E,则角ABD与角AEC为同弧AC所对圆周角,所以相等,角ECA为直径所对圆心角,是直角,与角BDA相等,所以△ABD与△AEC相似,所以有AB/AE=AD/AC,所以有AB*A
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
答:BD与⊙O的关系是相切理由:作直径BE,连接CE因为BE是直径,所以∠BCE=90度所以∠EBC+∠E=90度因为∠A=∠E,∠A=∠CBD所以∠EBC+∠CBD=90度所以BE⊥BD根据“过直径
连接OA,OC,AO交BC于点F,则OA=OC,∠B=∠C,∴AB=AC,由圆周角定理知,∠O=2∠D=60°,所以等腰△OAC是等边三角形,有AB=AC=OA,∵∠B=∠C,∴AE⊥BC∵AB=AC
(1)证明:∵连接CD,在⊙O中,∵∠ABC=∠ADC,∠1=∠3,∴△ABE∽△CDE,∴AECE=BEDE∵AE•DE=BE•CE; &n