已知:如图,EF是△ABC的中位线,外角ACG

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:01:08
已知:如图,EF是△ABC的中位线,外角ACG
如图,已知△ABC中,点D、E、F分别是AB、AC、BC上的点,DE∥BC,EF∥AB.

(1)∵DE∥BC,EF∥AB,∴∠AED=∠ECF,∠CEF=∠EAD.∴△ADE∽△EFC.(2)∵DE∥BC,EF∥AB,∴∠C=∠AED,∠FEC=∠A,∴△EFC∽△ADE,而S△ADE=2

已知:如图,在Rt△ABC中,EF是中位线,CD是斜线AB上的中线,求证:EF=CD

因为EF是中位线所以EF=二分之一的AB因为△ABC是Rt△且CD是斜线AB上的中线所以CD=二分之一的AB所以EF=CD

已知:如图,△ABC中,D是BC边的中点,BE交AD于点F,且EA=EF,求证:BF=AC

数理答疑团为您解答,希望对你有所帮助.题目非常完整,证明如下:因EA=EF,则∠CAD=∠EFA,而∠BFD=∠EFA,所以∠CAD=∠BFD因∠ADB+∠ADC=180°,故:sin∠ADB=sin

已知:如图,在三角形ABC中,BE、CF是高,D、G分别是BC、EF的中点.求证:DG垂直EF

亲爱的楼主:连结DE、DF∵BE、CF是高∴△BEC、△CFB都是RT△∵D是BC中点∴DE=DF=1/2BC又∵G是EF中点∴DG⊥EF祝您步步高升期望你的采纳,谢谢

如图,△ABC中,AD是BC的中线,EF是中位线,求证:AD、EF互相平分.

EF是中位线,所以EF与底边BC平行,连接DF,DE.DE和DF也分别是三角形的中位线,所以,AEDF构成一个平行四边形.AD和EF是平行四边形的对角线,所以相互平分

已知,如图,在△ABCD中,AB=AC,EF是△ABC的中位线,延长AB到D,使BD=AB,连接CD.求证:

证明:连接CE∵EF是△ABC的中位线∴EF‖BC且EF=1/2BC,AE=BE,AF=CF又,∵AB=AC,AB=DB∴FC=FA=1/2BDAE=AF∴∠AEF=∠AFE∴∠BEF=∠CFE∵EF

已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.

证明:∵DE,DF是△ABC的中位线,∴DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴平行四边形AEDF是矩形,∴EF=AD.

已知,如图,△ABC中,D是AB的中点,E是AC上的一点,EF‖AB,DF‖BE

∵D是AB的中点∴AD=BD∵EF‖AB,DF‖BE∴四边形BEFD是平行四边形∴EF=BD=AD∵EF‖AB∴EF‖AD∵EF‖AD,EF=AD∴四边形AFED是平行四边形∴DF、AE是平行四边形A

如图,已知;AD是△ABC的中线,求证;EF*AB=EC*AE

图呢?EF在哪再问:再答:延长AD到点G,使AD=DG,,并连接CG和BG 于是四边形ABGC两对角线互相平分,则ABCG是平行四边形. ∵AB//CG  &n

已知,如图△ABC中,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.

(1)DF与AE互相平分;∵D是AB的中点,∴AD=BD,∵EF∥AB,DF∥BE,∴四边形BEFD是平行四边形,∴EF=BD=AD,∵EF∥AB,∴EF∥AD,∵EF∥AD,EF=AD,∴四边形AF

已知:如图,在△ABC中,DE是中位线,EF∥AB,EF交BC于点F.求证:F是BC的中点.

证明:如图,∵在△ABC中,DE是中位线,∴点E是AC的中点.又∵EF∥AB,∴EF是△ABC的中位线,∴点F是BC的中点.

如图,已知:AD是△ABC的中线,求证:EF*AB=FC*AE

向量EF用AF-AE表示,FC用AC-AF表示,很容易证明是否成立

已知,如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点.求证:DG⊥EF

连结DE、DF∵BE、CF是高∴△BEC、△CFB都是RT△∵D是BC中点∴DE=DF=1/2BC又∵G是EF中点∴DG⊥EF

如图,已知点EF,分别是ABC△中ACAB,边的中点,BECF,相交于点G

EF是中位线,EF平行于BC再问:请问这是什么性质,我不记得了再答:中位线定理,三角形的中位线平行于第三边并且等于它的一半

已知,如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交bc

证:∵AD平分∠BAC,∴∠BAD=∠DAC又∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF∵∠BAF=∠BAD+∠DAF,∠ACF=∠DAC+∠ADF∴∠BAF=∠ACF.这很简单啊.

已知:如图,EF是△ABC的中位线,外角∠ACG的平分线交直线EF于点D.

延长AD,与BC交于G∵EF是中位线,∴E点是AB的中点,∵EF‖BC∴ED‖BG∴△ABG中,ED是中位线,∴G是AG的中点∴CD是△ACG的中线又∵CD是角平分线,∴△ACG是等腰三角形CD也是△

已知:如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点

∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明