已知,直线l:y=½x 2与x轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:57:56
整理圆方程得(x+1)2+(y+2)2=4∴圆心坐标为(-1,-2),半径r=2圆心到直线l的距离d=|−2+2−2|4+1=25<2∴直线与圆相交,设弦长为a,则a24+45=4解得a=855即直线
证明:园M:(x-4)²+(y-1)²=8,圆心M(4,1);半径R=2√2直线L:kx-y-3k=0过定点P(3,0)│MP│=√[(4-3)²+(1-0)²
圆C:x^2+y^2+2x-4y+3=0,配方得(x+1)^2+(y-2)^2=2,(1)设l:kx-y=0是圆C的切线,则|-k-2|/√(k^2+1)=√2,平方得k^2+4k+4=2(k^2+1
用点到直线距离公式|-8|/√(3^2+1)=4√10/5<4因此直线与圆相交既然是相交,p到直线的最短距离等于0
(1)已知⊙O:x2+y2=20圆心O(0,0),R=25,⊙O与⊙C关于直线l:y=2x+5对称.则直线OC的方程为:y=-12x,进一步建立方程组y=2x+5y=−12x,解得:x=−2y=1,利
求导得:y′=2x+3,∵直线l与曲线y=x2+3x-1切于点(1,3),∴把x=1代入导函数得:y′x=1=5,则直线l的斜率为5.故选D
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
(I)由圆x2+y2=4的方程,得到圆心坐标为(0,0),半径r=2,∵直线l与圆x2+y2=4相交所得弦CD=2,∴圆心到直线l的距离d═r2−(CD2)2=3,∴圆心到直线l:mx+ny-1=0的
圆心到直线的距离d=(2-1-m)/根号5.直线和圆相离,d>r=1,所以m
原点O吧?不然两个条件不是重复的吗?圆C:X2+Y2+2X-4Y+4=0(x+1)^2+(y-2)^2=1圆心C(-1,2)因为相切,圆心C到直线L的距离等于圆的半径=1设直线L的方程为y=kx+b,
设直线l与椭圆的交点坐标为M(x1,y1),N(x2,y2),由y=kx+1x22+y2=1消去y得(1+2k2)x2+4kx=0,所以x1+x2=−4k1+2k2,x1x2=0,由|MN|=423,
直线l:y=k(x−1)−3与圆x2+y2=1相切,故|k+3|1+ k2=1∴1+k2=k2+23k+3∴k=−33∴倾斜角为5π6故应选D.
设直线方程为x+y+a=0圆心到直线的距离=半径=2√2所以|a|/√(1方+1方)=2√2|a|=4a=±4直线方程为x+y+4=0或x+y-4=0
已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.[解析]设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).对于C1:y′=2x,
如图,考虑b>=0的情况,当直线与OCD线段相交时(不在D点),圆上有两个点与直线距离=2当直线过D点时,只有一个点(C)当直线在OD之外时,所以点距离都大于2由对称性,当|b|<2根号(
(x-1)^2+(y-1)^2=1圆心(1,1),半径=1直线x/a+y/b=1bx+ay-ab=0圆心到切线距离=半径所以|b+a-ab|/√(a^2+b^2)=1(a+b-ab)^2=a^2b^2
直线l与直线l:y=2x-3平行故k=2直线在y轴上的截距为4故直线经过(0,4)所以直线方程是y=2x+4
设直线l的方程为y=kx+b,由直线l与C1:y=x2相切得,∴方程x2-kx-b=0有一解,即△=k2-4×(-b)=0 ①∵直线l与C2:y=-(x-2)2相切得
圆x2+y2-4x+4y-1=0的圆心坐标(2,-2)半径是3;圆x2+y2=9的圆心(0,0)半径是3;两个圆的圆心的中点坐标(1,-1)斜率为-1,中垂线的斜率为1,中垂线方程:x-y-2=0故选