已知,如图,△ABC中,D为边AC上的一点,E是BC的延长线上的一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:49:14
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
因为AD^2=BD*CD所以AD/BD=CD/AD所以△BDA∽△ADC所以∠BAD=∠ACD又因为∠ACD+∠DAC=90º所以∠BAD+∠DAC=90º所以角A为直角所以三角形
你的图和题意不付D在AB上我按题意走方法一:∵BC=20,CD=16,BD=12∴BC²=CD²+BD²∴△CBD为直角三角形∴cos∠B=CD/BC=12/20=3/5
∵四边形EBCF是平行四边形∴EF∥BC,即ED∥BC,且EF=BC∵D是AC中点∴ED是△ABC的中位线∴ED=BC/2=EF/2∴D是EF中点∴EF、AC互相平分又EF∥BC,BC⊥AC∴EF⊥A
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
设角DAE为x则ADE=(180-2x)ADC=(192-2x)=BAD+DBA=30+(180-30-x)/2得x=58再问:������ϸһ����
如图,自点C作BA的平行线交DF于G.CG‖BD,则△BDF∽△CGF,得BF/CF=BD/CG.CG‖DA,则△ADE∽△CGE,得AE/EC=AD/CG,已知AD=BD,故AE/EC=BD/CG,
证明三角形全等就行了(角边角原理)ASA由题意可得∠B+∠BCD=∠ECF+∠BCD=90所以∠B=∠ECF又∵∠ACB=∠CEF=90,CE=BC∴△ABC=△FCE(ASA)∴AB=FC
因为20*20=16*16+12*12,得出三角形CDB是直角三角形,所以CD垂直于AB所以三角形CAD也是直角三角形设AD=a,所以AB=a+12,AC=a+12由勾股定理得(a+12)*(a+12
取AB的中点F,连接DF因为∠BDA=∠BAD,所以BA=BD=DC,所以D为中点则DF是△ABC的中位线所以2DF=AC容易证到△AFD和△DEA全等所以DF=AE所以2AE=AC说我的方法:延长E
△DEF和△ABC相似,且相似比是1/2所以:其面积比是1/4,所以:S△ABC=4S△DEF=4*4=16(平方厘米)
AD²=BD·DCAD/BD=DC/AD△ABD∽△CAD∠BAD=∠C∠BAD+∠B=∠C+∠B=90ABC为直角三角形再问:我们没学相似,麻烦用勾股定理证再答:AC²=AD
(1)延长BA、CE相交于点F,先证△BEC≌△BEF(ASA),∴CE=FE,∴CE=12CF,∵∠BAC是直角,∴∠BAD=∠CAF=90°,而∠F+∠FBE=∠FCA+∠F=90°,∴∠ACF=
证明:因为D,E分别为AB,AC的三等分点所以AD=1/3AB,AE=1/3AC,所以,AD/AB=AE/AC=1/3,又△ADE和△ABC有公共角A所以△ADE∽△ABC得证再答:不客气,这种题我很
1、BM=BD,∠A=60°,故△BMD是等边三角形,得出:∠AMD=120°,AM=DC.2、∠ACB=60°,CE是外角平分线,得出:∠DCE=120°3、∠ADM+CDE=60°,∠CED+∠C
证明:因为AB=AC所以∠B=∠C所以DE平行AB所以∠B=∠CDE所以∠C=∠CDE刘为溪小朋友,哇卡卡卡啊看
E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行
(1)△BPD与△CQP是全等,理由是:当t=1秒时BP=CQ=3,CP=8-3=5,∵D为AB中点,∴BD=1/2AC=5=CP,∵AB=AC,∴∠B=∠C,在△BDP和△CPQ中∵BD=CP∠B=
连接OE,OD,AD, ∵AB为圆O的直径,∴∠ADB=90°,又AB=AC,∴AD为∠BAC的平分线,即∠BAD=∠CAD又圆心角∠BOD与圆周角∠BAD都对BD弧又圆心角∠EOD与圆周角
因为等边三角形ABC、BDFBE=BD,BA=BC,∠FBD=∠ABC=60所以∠FBA=∠DBC所以△FBA≌△DBC因为D、E分别是AC、BC的中点所以BD⊥AC,AE⊥BC,BD平分∠ABC所以