已知,如图,ab,ac是圆o的弦,且ab=cd,m,n分别是ab,cd的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 09:04:40
连OC,OB,因为OA=OB=OC,所以∠OBA=∠OAB,∠OCA=∠OAC,又因为OA平分∠BAC,所以∠OBA=∠OAB=∠OAC=∠OCA,所以∠AOC=∠AOB,所以弧AB=弧AC
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
∠BAO=27.5°一、因为AB,AC是圆O的两条先弦,所以A、B、C三点都在圆上.OA=OB=OC=r.又因为AB=AC,所以△OAB≌△OAC,所以∠BAO=∠OAC,∠OBA=∠OCA,又因为O
1、连结OD. 显然,AO=DO,∴∠OAD=∠ODA,而∠CAD=∠OAD,∴∠CAD=∠ODA, ∴AE∥OD,又DE⊥AE,∴DE⊥OD,∴DE是⊙O的切线.2、你是不是将AE/AB=3/5
①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
1,连接AC,AD,AB,CO因为AB是直径,CO是半径,所以AO=BO=CO,故CO将角AOB平分,易得角AOC=角COB=90度,角CAO=45度,因为AC平分角DAB,所以角DAC=角CAO=4
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
连接BC,AC是直径,故∠ABC=90°,AC=AB/cosA=8连接AD,根据垂径定理,∠BAD=2∠A=60°,那么D,A在BD同侧故∠BOD=2∠BAD=120°S=120/360×8π=8π/
证:过o点作ac的垂线交ac于e点.所以角oec=90度.因为ab=ac,所以角b=角c.因为圆与ab相切,所以od垂直于ab,即角bdo=90度.因为o为bc中点,所以bo=oc由以上条件得三角形b
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
连接AD,OD;推论一因为AB为直径则在三角形ABD中∠DBA+∠DAB=∠BDA=90°,∠DAB=∠ODA;推论二因为AB⊥AC则在三角形ABC中∠DAC=∠DBA推论三又因为E为AC中点在直角三
1.连接OD,OA=OD,则∠DAO=∠ADO,AD为角平分线,有∠CAD=∠DAO,则∠CAD=∠ADO,所以AC//OD,又DE⊥AC,则∠CAD+∠ADE=90,∠ADE+∠ADO=90,所以O
连接OB,OC,OAB和OAC两个等腰三角形全等,所以AB=AC,进而弧AB=弧AC
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
由于同弧所对的圆心角和圆周角关系可得∵∠ABD=60,∴∠AOD=120故,∠COD=∠COB=60.∴阴影面积=1/3圆的面积(因为120°=1/3*360°).又因为AB=2√3,所以半径=2(因
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A
1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F