已知,在等边三角形abc中,ab等于2根号3,d,e分别是ab,bc的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:43:20
∵△ABD和△CBE中,∠ABD=∠CBE=60°,AB=CB,BD=BE∴△ABD≌△CBE∵△ABN和△CBM中,∠ABN=60°+60°=120°,∠CBM=180°-60°=120°=∠ABN
∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°
再问:第一问怎么知道的∠ABM=∠BCN?再答:等边三角形的内角啊,都是60度再问:奥~~~~对了,怪不得做不出来呢,原来没仔细看,呵呵谢谢你了。会采纳你的。
等别是三角形ABC三个角的角平分线与角对边的交点
有正弦定理sinA/a=sinB/b=sinC/c和a/cosA=b/cosB=c/cosC相乘tanA=tanB=tanCA=B=C
证明:由三角形正弦定理得a/sinA=b/sinB=c/sinC所以a/b=sinA/sinB=cosA/cosB得sinAcosB-cosAsinB=0所以sin(A-B)=0所以A-B=π*n(n
(0,4√3)因为△ABC为等边三角形,所以AB=AC=BC=8,∠CAB=∠CBA∠ACB=60°因为AO=BO=4,所以CO垂直于AB所以C在y轴上;在直角三角形中∠CAO=60°,∠ACO=30
∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌⊿CFE≌
三个角相等的三角形是等边三角形,这是公理
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
A+B+C=180°3B=180°B=60°由余弦定理a^2+c^2-b^2=2accosBa^2+c^2-ac=2ac*1/2(a-c)^2=0a=c且B=60°可知三角形ABC为等边三角形
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
先证角BAE=90度,设BC为X则AB=2XAC=根号三X,所以也等于AE作DH垂直于AB即可求出DH=根号三X所以可证三角形AFE全等于三角形DFH即证DF=EF相信你一定可以的!第二个问看开懂
这是步骤:∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌
(sinB)^2=(1-cos2B)/2.sinAsinC=-(1/2)(cos(A+C)-cos(A-C))所以:根据2B=A+C,得到:cos2B=cos(A+C).所以消去这个项,得到:1/2=
c点坐标(3,3根号3),设y=k/x,带入得k,求出解析式.向上平移三角形就是当横坐标为6时,反比例函数的值,带入上式求得的解析式,求出的y就是n
解,实际只有四点:三角形内1点,外4点.以⊿ABC的各边分别向外做正⊿ABP,⊿BCQ,⊿ACR,连接PC,AQ,BR交于一点O.则,P,Q,R,O为满足点.可以证明:OP,OQ,OR分别是AB,BC
解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程:
先吐槽...不可能是等边三角形吧--sinA=√2/10cosA=7√2/10tanA=1/7tan(A-B)=(tanA-tanB)/(1+tanAtanB)=-2/11(1/7-tanB)/[1+