已知,在△ABC中,AC=½AB,射线AP平分∠BAC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:29:19
已知,在△ABC中,AC=½AB,射线AP平分∠BAC
在△ABC中,已知向量2AB·AC=√3AB·AC=3BC²,求角A、B、C的大小

向量2AB·AC=√3AB·AC字母错了.两个字母完全一样,这是不可能的因为相同的话必须有一个是0,即只能是cosA=0得到A=90度但是3BC²=2AB·AC=0得到BC=0,错了.你看是

在△ABC中,已知(a+b+c)(a+c-b)=3ac.

(1)由(a+b+c)(a+c-b)=3ac得a2+c2-b2=ac由余弦定理得cosB=12所以角B=π3.(2)由(1)知A+C=2π32cos2A+cos(A−C)=1+cos2A+cos(2A

已知:在△ABC中,AB=AC=2a,∠ABC=∠ACB=15° 求:S△ABC.

如图,延长BA,过点C作CD⊥AD,∵AB=AC∴∠B=∠C=15°∵∠DAC是△ABC的外角∴∠DAC=30°∴CD=12AC=a∴S△ABC=12AB•CD=12×2a×a=a2

已知,在△ABC和△A'B'C'中,AB=A'B',AC=A'C',BC>B'C',求证:∠A>∠A'

(1)提示:作CD⊥AB于D点,则CD=b·sinα,AD=b·cosα.再利用BC2=CD2+DB2的关系,求出BC.(2)

已知,如图,在△ABC中,AB=AC,且BD垂直AC,垂足为D.求证:∠DBC=二分之一∠A

因为AB=AC所以∠ABC=∠C因为∠A+∠ABC+∠C=180度则∠A+2∠C=180度∠C=90度-∠A/2因为BD垂直AC则∠DBC+∠C=90度∠DBC+90度-∠A/2=90度所以∠DBC=

在三角形ABC中,已知B=60度,b方=ac,则角A等于?

答:根据余弦定理:b^2=a^2+c^2-2accos∠B=a^2+c^2-2accos60°又因为:b^2=ac所以:ac=a^2+c^2-ac(a-c)^2=0a=c所以∠A=∠C=(180-∠B

在△ABC中,已知∠A=60°,AB:AC=8:5,面积为103

已知AB:AC=8:5,设AC=5x,则AB=8x,所以,12•8x•6x•sin60°=103,得x=±1,-1舍去(不合题意),所以AB=8,AC=5,∴BC2=64+25-2×8×5×cos60

已知在△ABC中,AB=a+5,BC=8-a,AC=a

就是一个三角不等关系的运用1)存在,周长15.5当A=2.5时AB=7.5BC=5.5AC=2.5BC+AC=8大于AB=7.5所以存在2)同理也不存在当A=3时AB=8BC=5AC=3BC+AC=8

平面向量的题目在△ABC中,已知2×向量(AB)·向量(AC)=根号(3)×AB×AC=3×BC²,求角A、B

∵2AB*AC=√3|AB|*|AC|∴AB*AC/(|AB|*|AC|)=√3/2即cosA=√3/2则角A=π/6所以C+B=5π/6又√3|AB|*|AC|=3|BC|²∴|AB|*|

在△ABC中,已知b*b=ac,a*a-c*c=ac-bc,求A的大小以及bsinB/c的值

根据余弦定理有:a^2=b^2+c^2-2bccosAa^2-c^2=b^2-2bccosA而:b^2=ac,a^2-c^2=ac-bc所以:ac-bc=ac-2bccosAcosA=1/2A=60度

如图,已知在△ABC中,AB=AC,∠A=40°,∠ABC的平分线BD交AC于D.

∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°-40°)÷2=70°,又∵BD为∠ABC的平分线,∴∠ABD=∠CDB=35°,∴∠ADB=180°-(40°+35°)=105°.故∠ADB

已知△ABC中,BC=a-1,AC=a,AB=a+1

(1)AB边是最长边,其理由是:∵AB-BC=(a+1)-(a-1)=2>0,AB-AC=(a+1)-a=1>0,∴AB>BC,AB>AC.∴AB边是最长边.(2)由BC+AC>AB,得(a-1)+a

已知,如图所示,在△ABC中,∠A是锐角,CD是AB边上的高,求证BC^2=AB2^+AC^2-2AB·AC

同学:你的结论似乎有误能够证明的是下面的结论:BC^2=AB2^+AC^2-2AB·AD证明要点:注意在两个直角三角形中运用勾股定理可得:BC^2=BD^2+CD^2=(AB-AD)^2+AC^2-A

已知在△ABc中,角A=90。,AB=Ac,cD平分角ACB

解题思路:运用三角形全等解答。解题过程:见附件。最终答案:略

在△ABC中,已知2向量AB*向量AC=√ 3|向量AB|*|向量AC|=3BC²,求角A,B,C的大小

由2向量AB*向量AC=√3|向量AB|*|向量AC|,得cosA=向量AB*向量AC/|向量AB|*|向量AC|=√3/2,所以A=30.由√3|向量AB|*|向量AC|=3BC²,利用正

在△ABC中,已知2向量AB*向量AC=√ 3|向量AB|*|向量AC|=3BC²,求A,B,C的大小.

设BC=a,AC=b,AB=c由2向量AB*向量AC=√3|向量AB|*|向量AC|得,2bccosA=√3bc,∴cosA=√3/2∴A=π/6由√3|向量AB|*|向量AC|=3BC²,

在△ABC中,已知∠A=90º,AB=AC.D是AC的中点.求tan∠DBA和sin∠DBC

设AB=AC=2AD=CD=1tan∠DBA=AD/AB=1/2sin∠DBA=AD/BD=1/√5cos∠DBA=2/√5sin∠DBC=sin(π/4-∠DBA)=√2/2(cos∠DBA-sin

余弦定理题目在△ABC中,已知b²=ac ,a²-c²=ac-bc求bsinB/c的值.

因为b^2=ac,所以a^2=ac-bc+c^2=b^2+c^2-bc由余弦定理得a^2=b^2+c^2-2bccosA得两式右侧相等,最终化简,结果为cosA=0.5,所以角A为60°因为b^2=a