已知 ,AB是圆O的 直径 ,C.D是弦,AE垂直CD,BF垂直CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:05:28
连接OC因为OA=OC所以∠A=∠C因为OD//AC所以∠BOD=∠A(两直线平行,同位角相等)所以∠COD=∠C(两直线平行,内错角相等)所以∠BOD=∠COD所以弧BD=弧CD
设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3
解题思路:线面关系解题过程:见附件最终答案:略
这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,
证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(
延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
因为oc=ob所以∠ocb=obc=70又因为cd与圆o相切所以∠ocd=90所以∠bcd=90-70=20所以∠d=70-20=50
因为AB是圆O的直径,所以角ACB=90°!
设直径和EF相较于点OX=6AE=2那么根据勾股定理得到边长OE=4√2同理得到:OF=6√2那么EF=6√2-4√2=2√2再得到;AC=√(8+4)=2√3
联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等
证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC
由勾股定理得BP=10连接AC,可证三角形ABC与PBA相似,可得BC=18/5,CP=32/5,AC=24/5过C作AP垂线,垂足为E三角形PCE与PBA相似,可得CE=96/25sinADC=CE
作OQ⊥AB,连DO并延长MC于P,连接OA则AQ=BQ=AB/2因为MC⊥AB,ND⊥AB所以MC//ND//OQ所以∠M=∠N又因为∠POM=∠DON,OM=ON所以△MOP≌△NOD所以MP=N
已知AB是圆O的直径,P为AB上一点,C,D为圆上两点在AB同侧,且∠CPA=∠DPB,求证:CDPO四点共圆延长直径AB,延长CD,相交于S.延长CP交圆O于M.延长DP交圆O于N.因为AB是直径,
已知,AB为圆O的直径,以A为圆心,以AO为半径画弧,交圆O于C,D两点,试证明三角形BCD是等边三角形证明:连接AC、AD、OC、OD因为:AC=AD=OC=OD,所以△OAC、△OAD都是等边三角
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A