岳阳如图,正方形ABCD中,M为BC上一点,F是AM中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:17:37
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,
(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.在△ADP与△CDQ中,∠DAP=∠DCQ=90°AD=CD∠ADP=∠CDQ∴△ADP≌△CDQ(ASA),∴DP=DQ.(2)猜测:
设正方形边长为1,m的面积就是1/2×1/2=1/4再设n的边长为x,如图,AD=1,可求x再算n面积为x的平方,等于2/9所以m/n=9/8明白吗?
设正方形的边长为a由三角形BGC与MGA相似,得G到AM距离为a/3,到BC距离为2a/3阴影部分是梯形AMCB去掉三角形BGC与MGA,24=3a^2/4-a^2/12-a^2/3解得a^2=72平
证明(1)连接A1C1∵M是A1B中点,N是BC1中点∴MN//A1C1∵A1C1在面A1B1C1D1内∴MN//平面A1B1C1D1∵正方体∴面A1B1C1D1//面ABCDMN不在面ABCD内∴M
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
连结CD1,取CD1的中点P,连结PM,PN在△CC1D1中,NP‖C1D1,∵C1D1‖CD∴NP‖CD在矩形A1BCD1中,MP‖BC∴△MNP‖平面ABCD∴MN‖平面ABCD
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
在AB上截取FB=BM过点N做NP垂直BE于P所以△FBM、三角形CNP为等腰直角三角形所以角BFM=角NCP所以角AFM=角NCM又四边形ABCD为正方形∴AB=BCAB-FB=BC-BM即AF=C
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
证明:连接AC,交BD于O,连接MO∵四边形ABCD是正方形∴AO=CO∵M是VC的中点∴MO是△VAC的中位线∴MO//VA∵MO在面BDM内∴VA//平面BDM
N.P是CD,DD1中点,MP∥AD1﹙中位线﹚∥BC1 同理PN∥D1C∥A1B ∴平面MNP∥平面A1BC1
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
答:过点F作FG⊥AB交AB于点G所以:GF//AD,GF==AD1)因为:∠FGE=∠ABM=90°因为:EF是AM的垂直平分线所以:∠GEF=90°-∠BAM因为:∠BMA=90°-∠BAM所以:
学习一下思路切来的(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=