1-cosx n 收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:38:12
首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以
俺来回答一下,马上拍照再答:
设an=1/n.∵(1)an=1/n>1/(n+1)=an+1,(2)an-->0(n-->∞),∴根据莱布尼茨判别法知,交错级数∑(-1)^n/n收敛.
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
根据Kolmogorov的ThreeSeriesTheorem(http://en.wikipedia.org/wiki/Kolmogorov%27s_three-series_theorem),Tn
这是级数Σ(-1)^n/√(n+1),n从1到∞这可以看成Σanbn,其中an=1/√(n+1),bn=(-1)^n因为{an}单调趋近于0,|Σbn|≤1有界,所以根据Dirichlet判别法,级数
(-1)^n*1/n收敛1/n不收敛这个要用莱布尼茨判定法交错级数∑(-1)^(n-1)an当数列an递减且通项an极限为0时就收敛如果|an|收敛则交错级数绝对收敛若|an|发散则条件收敛再问:这个
∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
收敛域[-2,2),可用求导求积法求和.
条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑
∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再
cos派等于负一,该式等于(1+1/n),n趋向无穷时,该式极限为1.证明可以用单调有界定理,上下界分别是2跟1,加上单调递减,结论得证.
对于任意ε>0令N=[1/ε]+1>1/ε则对于任意n>N|-1/n|=|1/n|再问:您好,谢谢你!是不是这样的解法适用于所有的负值的式子呢?还有就是这样的解法在哪里有?我想进一步了解!谢谢您!再答
应用比较审敛法,|cosnα|
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^