8x y=k 1 x 8y=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:51:36
8x y=k 1 x 8y=3
已知x2-xy=-3,2xy-y2=-8,求2x2+4xy-3y2的值.

x2-xy=-3①,2xy-y2=-8②,①×2+②×3得:2x2-2xy+6xy-3y2=-6-24=-30,则2x2+4xy-3y2=-30.

先化简,再求值 ⒈2(Xy+Xy)-3(Xy-xy)-4Xy,其中X=1,y=-1

1.2(Xy+Xy)-3(Xy-xy)-4Xy=2*2xy-0-4xy=4xy-4xy=02.1/2ab-5aC-(3acb)+(3aC-4aC)=1/2ab-5ac-3acb-ac=1/2ab-6a

(-3x^y+2xy)-( )=4x^+xy

(-3x^y+2xy)-(4x^+xy)=-3x^y+2xy-4x^-xy=-3x^y+xy-4x^所以填上-3x^y+xy-4x^

xy'=y+xy的

xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs

当x=3,y=3分之1时,求代数出3xy-[2xy-2(xy-2分之3xy)+xy]+3xy的值

3xy-[2xy-2(xy-2分之3xy)+xy]+3xy=6xy-[2xy-2xy+3xy+xy)=6xy-4xy=2xy=2×3×3分之1=2

(8xy-3x平方)-5xy-2(3xy-2x平方),其中,x=2,y=-1

(8xy-3x平方)-5xy-2(3xy-2x平方)=8xy-3x²-5xy-6xy+4x²=x²-3xy=4+6=10

已知2x+xy=10,3y+2xy=6.求4x+8xy+9y=?

1、已知2x²+xy=10,3y²+2xy=6,求4x²+8xy+9y²的值为?分析:通过观察,可以把8xy拆成2xy+6xy,分别于剩余的两项组合,并提取公因

当k=()时,多项式x^2-3kxy+三分之一xy-8中不含xy项!

不含xy项就是说含XY的项为0即3kxy+三分之一xy=0解得K=-(1/9)

化简:xy分之3x^2+2xy-xy分之2x^2-xy=

(3x^2+2xy)/xy-(2x^2-xy)/xy=(3x^2+2xy-2x^2+xy)/xy=(x^2+3xy)/xy=x(x+3y)/xy=(x+3y)/y

dy/dx=3xy+xy^2.求y.

就是把这dydx转为求导前的式子,然后再求导一遍验证一下对错.再问:就是算到最后有个积分搞不出来。求过程。

xy/3x+2y=1/8 xy/2x+3y=1/7

设X=kY.kY^2/(3k+2)Y=1/8kY^2/((2k+3)Y=1/7由上式得:3k+2=8kY,2k+3=7kY所以2/(8Y-3)=3/(7Y-2)所以Y=1/2,X=1

x+y=8,xy=-2,求(5xy+4x+7y)+(6x-3xy)-(4xy-3y)的值

(5xy+4x+7y)+(6x-3xy)-(4xy-3y)=5xy+4x+7y+6x-3xy-4xy+3y=(5xy-3xy-4xy)+(4x+6x)+(7y+3y)=-2xy+10x+10y=-2x

当k=?多项式x²-3kxy+1/3xy-8中不含xy项

x²-3kxy+1/3xy-8=x²+(1/3-3k)xy-8所以1/3-3k=0k=1/9

求dx/dy-3xy=xy^2的通解

dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数

已知A=8x^2y-6xy^2-3xy,B=7xy^2-2xy+5x^2y,

∵A=8x²y-6xy²-3xy,B=7xy²-2xy+5x²y ∴C=3(A+B)  =3(8x²y-6xy²-3xy+7xy²

X+y=3 xy=-5 Xy=?

X+y=3xy=-5X-y=?(x-y)^2=(X+y)^2-4xy=9+20=29则x-y=±根号29

因式分解-2x的平方-12xy的2次方+8xy的3次方=?

-2x的平方-12xy的2次方+8xy的3次方=-2x(x+6y²-4y³)

解方程组xy+x=16&xy-x=8

由xy+x=16,得x=16/(y+1)代入xy-x=8,得16y/(y+1)-16/(y+1)=8=>16(y-1)/(y+1)=8=>(y-1)/(y+1)=1/2移项,通分得y-3/2(y+1)

求通解,dy/dx-3xy=xy^2

dy/dx=xy²+3xydy/dx=x(y²+3y)∫1/[y(y+3)]dy=∫xdx(1/3)∫(3+y-y)/[y(y+3)]dy=∫xdx∫[1/y-1/(y+3)]dy