8.设 A是n阶非零实矩阵,A* = AT,如果N>2证明|A|=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 13:43:51
8.设 A是n阶非零实矩阵,A* = AT,如果N>2证明|A|=1
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

设A=(B C)是n×m矩阵,B是n×s子矩阵

我刚刚当面点拨了你,你可以关闭问题了再问:我们在一起吧再答:你给我滚粗

设A是m*n矩阵,B是n*s矩阵,证明秩r(AB)

AB的列向量可由A的列向量线性表示所以r(AB)

设A是n阶矩阵,证明:rank{A+E}+rank{A-E}>=n.

要用到定理r(A)+r(B)>=r(A+B)故rank{A+E}+rank{A-E}=rank{A+E}+rank{E-A}=rank{2E}}=n该定理证明如下,令a1,a2...ar为A的极大线性

设a、b是n阶对称矩阵,试证明a+b也是对称矩阵

a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对

请解一线性代数题:设A是n*m矩阵,B是m*n矩阵,其中n

由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)

设A是m*n实矩阵,n

由已知,r(A)=r(A,b)=n又因为A是实矩阵,故有r(A'A)=r(A)=n所以A'A是n阶可逆矩阵

如题,设A是m*n矩阵,B是n*m矩阵,则( )

证:因为m>n则r(A)再答:选择A再答:请采纳哦,谢谢如有疑问,我继续作答

设A,B均是n阶正定矩阵,证明A+B是正定矩阵

转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定

设A是n阶矩阵,求证A+A^T为对称矩阵.

因为(A+A^T)^T=A^T+(A^T)^T=A^T+A=A+A^T所以A+A^T是对称矩阵

设A是n阶非零实矩阵,且A*=AT,证明:A是可逆矩阵

AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他

设A是m*n矩阵,B是n*m矩阵,其中n

R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

设m×n是矩阵A的秩为n,证明:矩阵A^TA为正定矩阵

首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设A是复数域C上一个n阶矩阵

设p1是A的属于特征值r1的特征向量将p1扩充为C^n的一组基p1,p2,...,pn则P=(p1,p2,...,pn)可逆且AP=(Ap1,Ap2,...,Apn)=(r1p1,Ap2,...,Ap

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵

对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0故A^TA是正定阵

设A是n阶矩阵,证明A+AT是对称矩阵

(A+AT)T=AT+(AT)T=AT+A=A+AT,所以A+AT是对称矩阵